Suppr超能文献

噬菌体λ宿主范围中滥交与特异性之间的平衡。

Balance between promiscuity and specificity in phage λ host range.

作者信息

Andrews Bryan, Fields Stanley

机构信息

Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.

Department of Genome Sciences, University of Washington, Seattle, WA, USA.

出版信息

ISME J. 2021 Aug;15(8):2195-2205. doi: 10.1038/s41396-021-00912-2. Epub 2021 Feb 15.

Abstract

As hosts acquire resistance to viruses, viruses must overcome that resistance to re-establish infectivity, or go extinct. Despite the significant hurdles associated with adapting to a resistant host, viruses are evolutionarily successful and maintain stable coevolutionary relationships with their hosts. To investigate the factors underlying how pathogens adapt to their hosts, we performed a deep mutational scan of the region of the λ tail fiber tip protein that mediates contact with the receptor on λ's host, Escherichia coli. Phages harboring amino acid substitutions were subjected to selection for infectivity on wild type E. coli, revealing a highly restrictive fitness landscape, in which most substitutions completely abrogate function. A subset of positions that are tolerant of mutation in this assay, but diverse over evolutionary time, are associated with host range expansion. Imposing selection for phage infectivity on three λ-resistant hosts, each harboring a different missense mutation in the λ receptor, reveals hundreds of adaptive variants in λ. We distinguish λ variants that confer promiscuity, a general ability to overcome host resistance, from those that drive host-specific infectivity. Both processes may be important in driving adaptation to a novel host.

摘要

随着宿主获得对病毒的抗性,病毒必须克服这种抗性以重新建立感染性,否则就会灭绝。尽管在适应抗性宿主方面存在重大障碍,但病毒在进化上是成功的,并与宿主保持着稳定的共同进化关系。为了研究病原体适应宿主的潜在因素,我们对λ尾纤维尖端蛋白中与λ宿主大肠杆菌上的受体介导接触的区域进行了深度突变扫描。携带氨基酸替代的噬菌体在野生型大肠杆菌上进行感染性选择,揭示了一个高度受限的适应性景观,其中大多数替代完全消除了功能。在该实验中耐受突变但在进化时间上具有多样性的一部分位置与宿主范围扩展相关。对三种对λ具有抗性的宿主(每种宿主在λ受体中携带不同的错义突变)进行噬菌体感染性选择,揭示了λ中的数百种适应性变体。我们区分了赋予通用性(即克服宿主抗性的一般能力)的λ变体和驱动宿主特异性感染性的λ变体。这两个过程在推动对新宿主的适应中可能都很重要。

相似文献

引用本文的文献

1
Phage-based delivery of CRISPR-associated transposases for targeted bacterial editing.基于噬菌体递送CRISPR相关转座酶用于靶向细菌编辑
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2504853122. doi: 10.1073/pnas.2504853122. Epub 2025 Jul 25.
2
Optimizing phage therapy with artificial intelligence: a perspective.利用人工智能优化噬菌体疗法:一种观点。
Front Cell Infect Microbiol. 2025 May 27;15:1611857. doi: 10.3389/fcimb.2025.1611857. eCollection 2025.
4
Spatial propagation of temperate phages within and among biofilms.温和噬菌体在生物膜内部及之间的空间传播。
Proc Natl Acad Sci U S A. 2025 Feb 11;122(6):e2417058122. doi: 10.1073/pnas.2417058122. Epub 2025 Feb 4.
8
High-throughput approaches to understand and engineer bacteriophages.高通量方法用于理解和设计噬菌体。
Trends Biochem Sci. 2023 Feb;48(2):187-197. doi: 10.1016/j.tibs.2022.08.012. Epub 2022 Sep 27.

本文引用的文献

5
Bacteriophage T4 long tail fiber domains.噬菌体T4长尾丝结构域
Biophys Rev. 2018 Apr;10(2):463-471. doi: 10.1007/s12551-017-0348-5. Epub 2017 Dec 4.
8
Plasmid-based one-pot saturation mutagenesis.基于质粒的一锅法饱和诱变
Nat Methods. 2016 Nov;13(11):928-930. doi: 10.1038/nmeth.4029. Epub 2016 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验