Suppr超能文献

一种用于分析深度突变扫描数据的统计框架。

A statistical framework for analyzing deep mutational scanning data.

作者信息

Rubin Alan F, Gelman Hannah, Lucas Nathan, Bajjalieh Sandra M, Papenfuss Anthony T, Speed Terence P, Fowler Douglas M

机构信息

Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.

Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia.

出版信息

Genome Biol. 2017 Aug 7;18(1):150. doi: 10.1186/s13059-017-1272-5.

Abstract

Deep mutational scanning is a widely used method for multiplex measurement of functional consequences of protein variants. We developed a new deep mutational scanning statistical model that generates error estimates for each measurement, capturing both sampling error and consistency between replicates. We apply our model to one novel and five published datasets comprising 243,732 variants and demonstrate its superiority in removing noisy variants and conducting hypothesis testing. Simulations show our model applies to scans based on cell growth or binding and handles common experimental errors. We implemented our model in Enrich2, software that can empower researchers analyzing deep mutational scanning data.

摘要

深度突变扫描是一种广泛用于多重测量蛋白质变体功能后果的方法。我们开发了一种新的深度突变扫描统计模型,该模型可为每次测量生成误差估计,同时捕获抽样误差和重复样本之间的一致性。我们将我们的模型应用于一个新的和五个已发表的数据集,这些数据集包含243,732个变体,并证明了其在去除噪声变体和进行假设检验方面的优越性。模拟表明,我们的模型适用于基于细胞生长或结合的扫描,并能处理常见的实验误差。我们在Enrich2软件中实现了我们的模型,该软件可以帮助研究人员分析深度突变扫描数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39cc/5547491/870f192d7386/13059_2017_1272_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验