Suppr超能文献

基于液相色谱/质谱联用的分子网络与经典植物化学方法相结合,可对非模式生物的代谢组进行深入注释——以褐藻Taonia atomaria为例。

Integration of LC/MS-based molecular networking and classical phytochemical approach allows in-depth annotation of the metabolome of non-model organisms - The case study of the brown seaweed Taonia atomaria.

作者信息

Carriot Nathan, Paix Benoît, Greff Stéphane, Viguier Bruno, Briand Jean-François, Culioli Gérald

机构信息

Université de Toulon, MAPIEM, Toulon, EA 4323, France.

Aix Marseille Université, CNRS, IRD, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Station Marine d'Endoume, Marseille, France.

出版信息

Talanta. 2021 Apr 1;225:121925. doi: 10.1016/j.talanta.2020.121925. Epub 2020 Dec 4.

Abstract

Untargeted LC-MS based metabolomics is a useful approach in many research areas such as medicine, systems biology, environmental sciences or even ecology. In such an approach, annotation of metabolomes of non-model organisms remains a significant challenge. In this study, an analytical workflow combining a classical phytochemical approach, using the isolation and the full characterization of the chemical structure of natural products, together with the use of MS/MS-based molecular networking with various levels of restrictiveness was developed. This protocol was applied to the marine brown seaweed Taonia atomaria, a cosmopolitan algal species, and allowed to annotate more than 200 metabolites. First, the algal organic crude extracts were fractionated by flash-chromatography and the chemical structure of eight of the main chemical constituents of this alga were fully characterized by means of spectroscopic methods (1D and 2D NMR, HRMS). These compounds were further used as chemical standards. In a second step, the main fractions of the algal extracts were analyzed by UHPLC-MS/MS and the resulting data were uploaded to the Global Natural Products Social Molecular Networking platform (GNPS) to create several molecular networks (MNs). A first MN (MN-1) was built with restrictive parameters and allowed the creation of clusters composed by nodes with highly similar MS/MS spectra. Then, using database hits and chemical standards as "seed" nodes and/or similarity between MS/MS fragmentation pattern, the main clusters were easily annotated as common glycerolipids and phospholipids, much rare lipids -such as acylglycerylhydroxymethyl-N,N,N-trimethyl-ß-alanines or fulvellic acid derivatives- but also new glycerolipids bearing a terpene moiety. Lastly, the use of less and less constrained MNs allowed to further increase the number of annotated metabolites.

摘要

基于非靶向液相色谱-质谱联用的代谢组学在医学、系统生物学、环境科学甚至生态学等许多研究领域都是一种有用的方法。在这种方法中,对非模式生物代谢组的注释仍然是一项重大挑战。在本研究中,开发了一种分析工作流程,该流程将经典的植物化学方法(利用天然产物化学结构的分离和全面表征)与基于串联质谱的不同限制级别的分子网络相结合。该方案应用于全球分布的海藻物种——海洋褐藻Taonia atomaria,并能够注释200多种代谢物。首先,通过快速色谱法对藻类有机粗提物进行分离,并通过光谱方法(一维和二维核磁共振、高分辨质谱)全面表征了该藻类八种主要化学成分的化学结构。这些化合物进一步用作化学标准品。第二步,通过超高效液相色谱-串联质谱对藻类提取物的主要馏分进行分析,并将所得数据上传至全球天然产物社会分子网络平台(GNPS)以创建多个分子网络(MNs)。第一个分子网络(MN-1)是在严格参数下构建的,能够创建由具有高度相似串联质谱谱图的节点组成的簇。然后,利用数据库匹配结果和化学标准品作为“种子”节点和/或串联质谱碎片模式之间的相似性,主要簇很容易被注释为常见的甘油脂和磷脂、非常罕见的脂质——如酰基甘油羟甲基-N,N,N-三甲基-β-丙氨酸或褐藻黄质酸衍生物——还有带有萜烯部分的新甘油脂。最后,使用限制越来越少的分子网络能够进一步增加注释代谢物的数量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验