Suppr超能文献

智能手机应用使用中隐私的时间和文化限制。

Temporal and cultural limits of privacy in smartphone app usage.

作者信息

Sekara Vedran, Alessandretti Laura, Mones Enys, Jonsson Håkan

机构信息

Sony Mobile Communications, 22188, Lund, Sweden.

Department of Computer Science, IT University of Copenhagen, Copenhagen S, 2300, Denmark.

出版信息

Sci Rep. 2021 Feb 16;11(1):3861. doi: 10.1038/s41598-021-82294-1.

Abstract

Large-scale collection of human behavioural data by companies raises serious privacy concerns. We show that behaviour captured in the form of application usage data collected from smartphones is highly unique even in large datasets encompassing millions of individuals. This makes behaviour-based re-identification of users across datasets possible. We study 12 months of data from 3.5 million people from 33 countries and show that although four apps are enough to uniquely re-identify 91.2% of individuals using a simple strategy based on public information, there are considerable seasonal and cultural variations in re-identification rates. We find that people have more unique app-fingerprints during summer months making it easier to re-identify them. Further, we find significant variations in uniqueness across countries, and reveal that American users are the easiest to re-identify, while Finns have the least unique app-fingerprints. We show that differences across countries can largely be explained by two characteristics of the country specific app-ecosystems: the popularity distribution and the size of app-fingerprints. Our work highlights problems with current policies intended to protect user privacy and emphasizes that policies cannot directly be ported between countries. We anticipate this will nuance the discussion around re-identifiability in digital datasets and improve digital privacy.

摘要

公司大规模收集人类行为数据引发了严重的隐私担忧。我们发现,即使在包含数百万个体的大型数据集中,以从智能手机收集的应用使用数据形式捕获的行为也是高度独特的。这使得跨数据集基于行为对用户进行重新识别成为可能。我们研究了来自33个国家的350万人的12个月数据,结果表明,尽管使用基于公开信息的简单策略,四款应用就足以唯一地重新识别91.2%的个体,但重新识别率存在相当大的季节性和文化差异。我们发现,人们在夏季的应用指纹更为独特,这使得对他们进行重新识别更加容易。此外,我们发现不同国家之间在独特性方面存在显著差异,并揭示美国用户最容易被重新识别,而芬兰人的应用指纹最不独特。我们表明,国家之间的差异在很大程度上可以由特定国家应用生态系统的两个特征来解释:应用的流行度分布和应用指纹的大小。我们的工作凸显了当前旨在保护用户隐私的政策存在的问题,并强调这些政策不能直接在不同国家之间移植。我们预计这将使围绕数字数据集中可重新识别性的讨论更加细致入微,并改善数字隐私。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34d4/7887199/b20c2b79ee44/41598_2021_82294_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验