Suppr超能文献

基于代理的模型从目标试验中进行因果推断的改进方法。

Emulating Target Trials to Improve Causal Inference From Agent-Based Models.

出版信息

Am J Epidemiol. 2021 Aug 1;190(8):1652-1658. doi: 10.1093/aje/kwab040.

Abstract

Agent-based models are a key tool for investigating the emergent properties of population health settings, such as infectious disease transmission, where the exposure often violates the key "no interference" assumption of traditional causal inference under the potential outcomes framework. Agent-based models and other simulation-based modeling approaches have generally been viewed as a separate knowledge-generating paradigm from the potential outcomes framework, but this can lead to confusion about how to interpret the results of these models in real-world settings. By explicitly incorporating the target trial framework into the development of an agent-based or other simulation model, we can clarify the causal parameters of interest, as well as make explicit the assumptions required for valid causal effect estimation within or between populations. In this paper, we describe the use of the target trial framework for designing agent-based models when the goal is estimation of causal effects in the presence of interference, or spillover.

摘要

基于代理的模型是研究人群健康环境中涌现属性(如传染病传播)的关键工具,在潜在结果框架下,这种暴露通常违反了传统因果推断的关键“无干扰”假设。基于代理的模型和其他基于模拟的建模方法通常被视为与潜在结果框架不同的知识生成范式,但这可能导致人们混淆如何在实际环境中解释这些模型的结果。通过将目标试验框架明确纳入基于代理的模型或其他模拟模型的开发中,我们可以澄清感兴趣的因果参数,并明确在人群内或人群间进行有效因果效应估计所需的假设。在本文中,当目标是在存在干扰或溢出的情况下估计因果效应时,我们描述了使用目标试验框架来设计基于代理的模型。

相似文献

本文引用的文献

1
Causal Inference for Social Network Data.社交网络数据的因果推断
J Am Stat Assoc. 2024;119(545):597-611. doi: 10.1080/01621459.2022.2131557. Epub 2022 Dec 12.
2
Auto-G-Computation of Causal Effects on a Network.网络上因果效应的自动G计算
J Am Stat Assoc. 2021;116(534):833-844. doi: 10.1080/01621459.2020.1811098. Epub 2020 Oct 1.
7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验