Suppr超能文献

参数化个体水平模拟模型中直接效应的挑战。

The Challenges of Parameterizing Direct Effects in Individual-Level Simulation Models.

机构信息

Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA.

Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA.

出版信息

Med Decis Making. 2020 Jan;40(1):106-111. doi: 10.1177/0272989X19894940.

Abstract

Individual-level simulation models are used to assess the effects of health interventions in complex settings. However, estimating valid causal effects using these models requires correct parametrization of the relationships between time-varying treatments, outcomes, and other variables in the causal structure. To parameterize these relationships, individual-level simulation models typically need estimates of the direct effects of treatment. However, direct effects of treatment are often not well- defined and therefore cannot be validly estimated from any data. In this paper, we explain the causal meaning of the parameters of individual-level simulation models as direct effects, describe why direct effects may be difficult to define unambiguously in some settings, and conclude with some suggestions for the design of individual-level simulation models in those settings.

摘要

个体水平模拟模型被用于评估复杂环境下卫生干预措施的效果。然而,使用这些模型来估计有效的因果效应,需要正确参数化随时间变化的处理、结果和因果结构中其他变量之间的关系。为了参数化这些关系,个体水平模拟模型通常需要处理的直接效应的估计。然而,处理的直接效应通常没有很好的定义,因此不能从任何数据中有效地估计。在本文中,我们将解释个体水平模拟模型参数的因果意义作为直接效应,描述为什么在某些情况下直接效应可能难以明确界定,并对在这些情况下设计个体水平模拟模型提出一些建议。

相似文献

5
Simulation in cardiology: state of the art.心脏病学中的模拟:当前技术水平
Eur Heart J. 2015 Apr 1;36(13):777-83. doi: 10.1093/eurheartj/ehu527. Epub 2015 Jan 13.
7
Floods: some probabilistic and statistical approaches.洪水:一些概率和统计方法。
Philos Trans A Math Phys Eng Sci. 2002 Jul 15;360(1796):1389-408. doi: 10.1098/rsta.2002.1006.
8
10
Simulation Basics: How to Conduct a High-Fidelity Simulation.模拟基础:如何进行高保真模拟
AACN Adv Crit Care. 2016 Feb;27(1):71-7. doi: 10.4037/aacnacc2016569.

引用本文的文献

7
A biologist's guide to model selection and causal inference.生物学家的模型选择与因果推断指南。
Proc Biol Sci. 2021 Jan 27;288(1943):20202815. doi: 10.1098/rspb.2020.2815.
8
Complex systems models for causal inference in social epidemiology.社会流行病学中用于因果推断的复杂系统模型。
J Epidemiol Community Health. 2021 Jul;75(7):702-708. doi: 10.1136/jech-2019-213052. Epub 2020 Nov 10.

本文引用的文献

2
Using Observational Data to Calibrate Simulation Models.利用观测数据校准仿真模型。
Med Decis Making. 2018 Feb;38(2):212-224. doi: 10.1177/0272989X17738753. Epub 2017 Nov 15.
4
Does water kill? A call for less casual causal inferences.水会致命吗?呼吁减少随意的因果推断。
Ann Epidemiol. 2016 Oct;26(10):674-680. doi: 10.1016/j.annepidem.2016.08.016. Epub 2016 Aug 31.
8
Toward Causal Inference With Interference.迈向具有干扰性的因果推断
J Am Stat Assoc. 2008 Jun;103(482):832-842. doi: 10.1198/016214508000000292.
9
Study designs for dependent happenings.相依事件的研究设计。
Epidemiology. 1991 Sep;2(5):331-8. doi: 10.1097/00001648-199109000-00004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验