文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

长非编码 RNA MAPKAPK5-AS1/PLAGL2/HIF-1α 信号通路促进肝细胞癌进展。

Long non-coding RNA MAPKAPK5-AS1/PLAGL2/HIF-1α signaling loop promotes hepatocellular carcinoma progression.

机构信息

Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.

出版信息

J Exp Clin Cancer Res. 2021 Feb 17;40(1):72. doi: 10.1186/s13046-021-01868-z.


DOI:10.1186/s13046-021-01868-z
PMID:33596983
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7891009/
Abstract

BACKGROUND: Long non-coding RNAs (lncRNAs) are widely involved in human cancers' progression by regulating tumor cells' various malignant behaviors. MAPKAPK5-AS1 has been recognized as an oncogene in colorectal cancer. However, the biological role of MAPKAPK5-AS1 in hepatocellular carcinoma (HCC) has not been explored. METHODS: Quantitative real-time PCR was performed to detect the level of MAPKAPK5-AS1 in HCC tissues and cell lines. The effects of MAPKAPK5-AS1 on tumor growth and metastasis were assessed via in vitro experiments, including MTT, colony formation, EdU, flow cytometry, transwell assays, and nude mice models. The western blotting analysis was carried out to determine epithelial-mesenchymal transition (EMT) markers and AKT signaling. The interaction between MAPKAPK5-AS1, miR-154-5p, and PLAGL2 were explored by luciferase reporter assay and RNA immunoprecipitation. The regulatory effect of HIF-1α on MAPKAPK5-AS1 was evaluated by chromatin immunoprecipitation. RESULTS: MAPKAPK5-AS1 expression was significantly elevated in HCC, and its overexpression associated with malignant clinical features and reduced survival. Functionally, MAPKAPK5-AS1 knockdown repressed the proliferation, mobility, and EMT of HCC cells and induced apoptosis. Ectopic expression of MAPKAPK5-AS1 contributed to HCC cell proliferation and invasion in vitro. Furthermore, MAPKAPK5-AS1 silencing suppressed, while MAPKAPK5-AS1 overexpression enhanced HCC growth and lung metastasis in vivo. Mechanistically, MAPKAPK5-AS1 upregulated PLAG1 like zinc finger 2 (PLAGL2) expression by acting as an endogenous competing RNA (ceRNA) to sponge miR-154-5p, thereby activating EGFR/AKT signaling. Importantly, rescue experiments demonstrated that the miR-154-5p/PLAGL2 axis mediated the function of MAPKAPK5-AS1 in HCC cells. Interestingly, we found that hypoxia-inducible factor 1α (HIF-1α), a transcript factor, could directly bind to the promoter to activate MAPKAPK5-AS1 transcription. MAPKAPK5-AS1 regulated HIF-1α expression through PLAGL2 to form a hypoxia-mediated MAPKAPK5-AS1/PLAGL2/HIF-1α signaling loop in HCC. CONCLUSIONS: Our results reveal a MAPKAPK5-AS1/PLAGL2/HIF-1α signaling loop in HCC progression and suggest that MAPKAPK5-AS1 could be a potential novel therapeutic target of HCC.

摘要

背景:长链非编码 RNA(lncRNA)通过调节肿瘤细胞的各种恶性行为,广泛参与人类癌症的进展。MAPKAPK5-AS1 已被认为是结直肠癌的癌基因。然而,MAPKAPK5-AS1 在肝细胞癌(HCC)中的生物学作用尚未得到探索。

方法:采用定量实时 PCR 检测 HCC 组织和细胞系中 MAPKAPK5-AS1 的水平。通过体外实验,包括 MTT、集落形成、EdU、流式细胞术、Transwell 测定和裸鼠模型,评估 MAPKAPK5-AS1 对肿瘤生长和转移的影响。采用 Western blot 分析检测上皮-间充质转化(EMT)标志物和 AKT 信号。通过荧光素酶报告基因测定和 RNA 免疫沉淀探索 MAPKAPK5-AS1、miR-154-5p 和 PLAGL2 之间的相互作用。通过染色质免疫沉淀评估 HIF-1α 对 MAPKAPK5-AS1 的调控作用。

结果:MAPKAPK5-AS1 在 HCC 中表达明显上调,其过表达与恶性临床特征和生存降低有关。功能上,MAPKAPK5-AS1 敲低抑制 HCC 细胞的增殖、迁移和 EMT,并诱导细胞凋亡。外源性表达 MAPKAPK5-AS1 促进 HCC 细胞在体外的增殖和侵袭。此外,MAPKAPK5-AS1 沉默抑制体内 HCC 生长和肺转移,而 MAPKAPK5-AS1 过表达增强体内 HCC 生长和肺转移。机制上,MAPKAPK5-AS1 通过作为内源性竞争性 RNA(ceRNA)来吸收 miR-154-5p,从而上调 PLAG1 样锌指 2(PLAGL2)的表达,从而激活 EGFR/AKT 信号。重要的是,挽救实验表明,miR-154-5p/PLAGL2 轴介导了 MAPKAPK5-AS1 在 HCC 细胞中的功能。有趣的是,我们发现转录因子缺氧诱导因子 1α(HIF-1α)可以直接结合启动子激活 MAPKAPK5-AS1 转录。MAPKAPK5-AS1 通过 PLAGL2 调节 HIF-1α 表达,在 HCC 中形成缺氧介导的 MAPKAPK5-AS1/PLAGL2/HIF-1α 信号环。

结论:我们的研究结果揭示了 HCC 进展中的 MAPKAPK5-AS1/PLAGL2/HIF-1α 信号环,并表明 MAPKAPK5-AS1 可能成为 HCC 的潜在新型治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/b9b12f1b8675/13046_2021_1868_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/436e8470e5e0/13046_2021_1868_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/a30aa461388c/13046_2021_1868_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/76310b1a9888/13046_2021_1868_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/d642d5777726/13046_2021_1868_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/8cb85e0a347c/13046_2021_1868_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/2ad80c39653a/13046_2021_1868_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/e9715a57c183/13046_2021_1868_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/ab59da2d00e9/13046_2021_1868_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/164df0edd401/13046_2021_1868_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/b9b12f1b8675/13046_2021_1868_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/436e8470e5e0/13046_2021_1868_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/a30aa461388c/13046_2021_1868_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/76310b1a9888/13046_2021_1868_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/d642d5777726/13046_2021_1868_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/8cb85e0a347c/13046_2021_1868_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/2ad80c39653a/13046_2021_1868_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/e9715a57c183/13046_2021_1868_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/ab59da2d00e9/13046_2021_1868_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/164df0edd401/13046_2021_1868_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7891009/b9b12f1b8675/13046_2021_1868_Fig10_HTML.jpg

相似文献

[1]
Long non-coding RNA MAPKAPK5-AS1/PLAGL2/HIF-1α signaling loop promotes hepatocellular carcinoma progression.

J Exp Clin Cancer Res. 2021-2-17

[2]
MAPKAPK5-AS1 drives the progression of hepatocellular carcinoma via regulating miR-429/ZEB1 axis.

BMC Mol Cell Biol. 2022-4-25

[3]
A novel lncRNA MCM3AP-AS1 promotes the growth of hepatocellular carcinoma by targeting miR-194-5p/FOXA1 axis.

Mol Cancer. 2019-2-19

[4]
Long non-coding RNA AGAP2-AS1, functioning as a competitive endogenous RNA, upregulates ANXA11 expression by sponging miR-16-5p and promotes proliferation and metastasis in hepatocellular carcinoma.

J Exp Clin Cancer Res. 2019-5-14

[5]
Long Noncoding RNA TRIM52-AS1 Sponges miR-514a-5p to Facilitate Hepatocellular Carcinoma Progression Through Increasing MRPS18A.

Cancer Biother Radiopharm. 2021-3

[6]
Long non-coding RNA CCDC183-AS1 acts AS a miR-589-5p sponge to promote the progression of hepatocellular carcinoma through regulating SKP1 expression.

J Exp Clin Cancer Res. 2021-2-4

[7]
LncRNA MYLK-AS1 facilitates tumor progression and angiogenesis by targeting miR-424-5p/E2F7 axis and activating VEGFR-2 signaling pathway in hepatocellular carcinoma.

J Exp Clin Cancer Res. 2020-11-9

[8]
HIF-1α-activated long non-coding RNA KDM4A-AS1 promotes hepatocellular carcinoma progression via the miR-411-5p/KPNA2/AKT pathway.

Cell Death Dis. 2021-12-13

[9]
Long noncoding RNA LEF1-AS1 acts as a microRNA-10a-5p regulator to enhance MSI1 expression and promote chemoresistance in hepatocellular carcinoma cells through activating AKT signaling pathway.

J Cell Biochem. 2021-1

[10]
Long non-coding RNA TTN antisense RNA 1 facilitates hepatocellular carcinoma progression via regulating miR-139-5p/SPOCK1 axis.

Bioengineered. 2021-12

引用本文的文献

[1]
Crosstalk between hypoxia-inducible factor (HIF) and lncRNAs in digestive tumors: from molecular mechanisms to clinical translation.

Front Cell Dev Biol. 2025-8-8

[2]
The Vulpes vulpes montana genome provides insights into high-altitude adaptation mechanisms of the Vulpes species.

Commun Biol. 2025-7-18

[3]
Liver-specific lncRNAs associated with liver cancers.

FEBS Open Bio. 2025-9

[4]
Development of a MVI associated HCC prognostic model through single cell transcriptomic analysis and 101 machine learning algorithms.

Sci Rep. 2025-3-7

[5]
CAF-EVs carry lncRNA MAPKAPK5-AS1 into hepatocellular carcinoma cells and promote malignant cell proliferation.

Commun Biol. 2024-12-30

[6]
A novel hypoxia-induced lncRNA, SZT2-AS1, boosts HCC progression by mediating HIF heterodimerization and histone trimethylation under a hypoxic microenvironment.

Cell Death Differ. 2025-4

[7]
Deciphering the nexus between long non-coding RNAs and endoplasmic reticulum stress in hepatocellular carcinoma: biomarker discovery and therapeutic horizons.

Cell Death Discov. 2024-10-24

[8]
Exploring the promise of regulator of G Protein Signaling 20: insights into potential mechanisms and prospects across solid cancers and hematological malignancies.

Cancer Cell Int. 2024-9-3

[9]
Hyperoxia exposure induces ferroptosis and apoptosis by downregulating PLAGL2 and repressing HIF-1α/VEGF signaling pathway in newborn alveolar typeII epithelial cell.

Redox Rep. 2024-12

[10]
New HCC Subtypes Based on CD8 Tex-Related lncRNA Signature Could Predict Prognosis, Immunological and Drug Sensitivity Characteristics of Hepatocellular Carcinoma.

J Hepatocell Carcinoma. 2024-7-5

本文引用的文献

[1]
A Positive Feedback Loop of lncRNA DSCR8/miR-98-5p/STAT3/HIF-1α Plays a Role in the Progression of Ovarian Cancer.

Front Oncol. 2020-9-2

[2]
LncRNA BCYRN1 inhibits glioma tumorigenesis by competitively binding with miR-619-5p to regulate CUEDC2 expression and the PTEN/AKT/p21 pathway.

Oncogene. 2020-9-25

[3]
Oroxylin A reverses hypoxia-induced cisplatin resistance through inhibiting HIF-1α mediated XPC transcription.

Oncogene. 2020-9-25

[4]
Aberrant NSUN2-mediated mC modification of H19 lncRNA is associated with poor differentiation of hepatocellular carcinoma.

Oncogene. 2020-9-25

[5]
Long non-coding RNA LPP-AS2 promotes glioma tumorigenesis via miR-7-5p/EGFR/PI3K/AKT/c-MYC feedback loop.

J Exp Clin Cancer Res. 2020-9-22

[6]
lncRNA-POIR promotes epithelial-mesenchymal transition and suppresses sorafenib sensitivity simultaneously in hepatocellular carcinoma by sponging miR-182-5p.

J Cell Biochem. 2021-1

[7]
HOTAIR contributes to the carcinogenesis of gastric cancer via modulating cellular and exosomal miRNAs level.

Cell Death Dis. 2020-9-19

[8]
Hypoxia inducible factor-2α importance for migration, proliferation, and self-renewal of trunk neural crest cells.

Dev Dyn. 2021-2

[9]
Attenuating hypoxia driven malignant behavior in glioblastoma with a novel hypoxia-inducible factor 2 alpha inhibitor.

Sci Rep. 2020-9-16

[10]
Hypoxia-Mediated Regulation of Histone Demethylases Affects Angiogenesis-Associated Functions in Endothelial Cells.

Arterioscler Thromb Vasc Biol. 2020-9-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索