Systems Ecology Research Group, Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg.
Metagenomics Support Unit, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
Microbiome. 2021 Feb 17;9(1):49. doi: 10.1186/s40168-020-00993-9.
Pathogenic microorganisms cause disease by invading, colonizing, and damaging their host. Virulence factors including bacterial toxins contribute to pathogenicity. Additionally, antimicrobial resistance genes allow pathogens to evade otherwise curative treatments. To understand causal relationships between microbiome compositions, functioning, and disease, it is essential to identify virulence factors and antimicrobial resistance genes in situ. At present, there is a clear lack of computational approaches to simultaneously identify these factors in metagenomic datasets.
Here, we present PathoFact, a tool for the contextualized prediction of virulence factors, bacterial toxins, and antimicrobial resistance genes with high accuracy (0.921, 0.832 and 0.979, respectively) and specificity (0.957, 0.989 and 0.994). We evaluate the performance of PathoFact on simulated metagenomic datasets and perform a comparison to two other general workflows for the analysis of metagenomic data. PathoFact outperforms all existing workflows in predicting virulence factors and toxin genes. It performs comparably to one pipeline regarding the prediction of antimicrobial resistance while outperforming the others. We further demonstrate the performance of PathoFact on three publicly available case-control metagenomic datasets representing an actual infection as well as chronic diseases in which either pathogenic potential or bacterial toxins are hypothesized to play a role. In each case, we identify virulence factors and AMR genes which differentiated between the case and control groups, thereby revealing novel gene associations with the studied diseases.
PathoFact is an easy-to-use, modular, and reproducible pipeline for the identification of virulence factors, bacterial toxins, and antimicrobial resistance genes in metagenomic data. Additionally, our tool combines the prediction of these pathogenicity factors with the identification of mobile genetic elements. This provides further depth to the analysis by considering the genomic context of the pertinent genes. Furthermore, PathoFact's modules for virulence factors, toxins, and antimicrobial resistance genes can be applied independently, thereby making it a flexible and versatile tool. PathoFact, its models, and databases are freely available at https://pathofact.lcsb.uni.lu . Video abstract.
病原体通过入侵、定植和损伤宿主而致病。毒力因子(包括细菌毒素)有助于致病性。此外,抗菌药物耐药基因使病原体能够逃避原本有效的治疗。为了理解微生物组组成、功能和疾病之间的因果关系,必须原位鉴定毒力因子和抗菌药物耐药基因。目前,在宏基因组数据集中同时鉴定这些因子的计算方法明显缺乏。
本研究提出了 PathoFact,这是一种用于高准确度(分别为 0.921、0.832 和 0.979)和特异性(分别为 0.957、0.989 和 0.994)的上下文化预测毒力因子、细菌毒素和抗菌药物耐药基因的工具。我们在模拟宏基因组数据集上评估了 PathoFact 的性能,并与两种其他用于分析宏基因组数据的一般工作流程进行了比较。PathoFact 在预测毒力因子和毒素基因方面优于所有现有的工作流程。在预测抗菌药物耐药方面,它与一个工作流程相当,而优于其他工作流程。我们进一步在三个公开的病例对照宏基因组数据集上演示了 PathoFact 的性能,这些数据集代表了实际感染以及慢性疾病,其中致病性潜力或细菌毒素被假设在其中发挥作用。在每种情况下,我们都鉴定了区分病例组和对照组的毒力因子和 AMR 基因,从而揭示了与研究疾病相关的新基因关联。
PathoFact 是一种易于使用、模块化和可重复使用的宏基因组数据分析工具,用于鉴定毒力因子、细菌毒素和抗菌药物耐药基因。此外,我们的工具将这些致病性因子的预测与移动遗传元件的鉴定相结合。通过考虑相关基因的基因组上下文,这为分析提供了更深入的信息。此外,PathoFact 的毒力因子、毒素和抗菌药物耐药基因模块可以独立应用,使其成为一种灵活多样的工具。PathoFact、其模型和数据库可在 https://pathofact.lcsb.uni.lu 免费获得。视频摘要。