Park Jusung, In Sungjun, Park Namkyoo
Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, South Korea.
Adv Mater. 2021 Apr;33(15):e2007831. doi: 10.1002/adma.202007831. Epub 2021 Feb 18.
As an efficient patterning method for nanostructures, nanocolloidal lithography (NCL) presents a controllable and scalable means for achieving a uniform and good sidewall profile, and a high aspect ratio. While high selectivity between the etching mask and targeted materials is also essential for NCL-based precision nanophotonic structures, its realization in multi-material nanophotonic structures still remains a challenge due to the dielectric- or metallic-material-dependent etching selectivity. Here, dispersion-controlled Au-NCL is proposed, which enables high selectivity for Al and SiO over a Au nanoparticle (Au-NP) mask. Utilizing the proposed process, wafer-scale, uniformly dispersed multi-material nanopawn structures (Au-NPs/Al-SiO cylinders) on an Al ultrathin film are realized, obtaining excellent vertical sidewall (≈90°) and aspect ratio (>1). The high sidewall verticality and aspect ratio of the nanopawn structures support optical modes highly sensitive to the excitation direction of incident waves through the mixing of the interface-gap-assisted localized surface plasmons (GLSPs) formed in between the Au-NP and Al-disk interface, and plasmonic Fabry-Pérot (FP) modes formed in between the Al-disk and Al substrate; complementary spectral responses between reflected and scattered light are also demonstrated. As an application example, information encryption based on the triple-channel (i.e., reflection, scattering, and transmission) angle-dependent complementary-color responses is presented.
作为一种用于纳米结构的高效图案化方法,纳米胶体光刻(NCL)提供了一种可控且可扩展的手段,以实现均匀且良好的侧壁轮廓以及高纵横比。虽然蚀刻掩膜与目标材料之间的高选择性对于基于NCL的精密纳米光子结构也至关重要,但由于蚀刻选择性取决于介电或金属材料,在多材料纳米光子结构中实现这一点仍然是一个挑战。在此,提出了色散控制的金纳米胶体光刻(Au-NCL),它能够在金纳米颗粒(Au-NP)掩膜上对铝和二氧化硅实现高选择性。利用所提出的工艺,在铝超薄膜上实现了晶圆级、均匀分散的多材料纳米pawn结构(Au-NPs/Al-SiO圆柱体),获得了优异的垂直侧壁(≈90°)和纵横比(>1)。纳米pawn结构的高侧壁垂直度和纵横比通过在Au-NP与铝盘界面之间形成的界面间隙辅助局域表面等离子体激元(GLSPs)与在铝盘和铝衬底之间形成的等离子体法布里-珀罗(FP)模式的混合,支持对入射波激发方向高度敏感的光学模式;还展示了反射光和散射光之间的互补光谱响应。作为一个应用示例,提出了基于三通道(即反射、散射和透射)角度相关互补色响应的信息加密方法。