Suppr超能文献

在电子束辐照下调整碳氮纳米片的化学计量比。

Tailoring the stoichiometry of CN nanosheets under electron beam irradiation.

作者信息

Mendes Rafael G, Ta Huy Q, Yang Xiaoqin, Bachmatiuk Alicja, Praus Petr, Mamakhel Aref, Iversen Bo B, Su Ren, Gemming Thomas, Rümmeli Mark H

机构信息

Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069 Dresden, Germany.

School of Energy and Power Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China.

出版信息

Phys Chem Chem Phys. 2021 Mar 4;23(8):4747-4756. doi: 10.1039/d0cp06518h.

Abstract

Two-dimensional polymeric graphitic carbon nitride (g-C3N4) is a low-cost material with versatile properties that can be enhanced by the introduction of dopant atoms and by changing the degree of polymerization/stoichiometry, which offers significant benefits for numerous applications. Herein, we investigate the stability of g-C3N4 under electron beam irradiation inside a transmission electron microscope operating at different electron acceleration voltages. Our findings indicate that the degradation of g-C3N4 occurs with N species preferentially removed over C species. However, the precise nitrogen group from which N is removed from g-C3N4 (C-N-C, [double bond, length as m-dash]NH or -NH2) is unclear. Moreover, the rate of degradation increases with decreasing electron acceleration voltage, suggesting that inelastic scattering events (radiolysis) dominate over elastic events (knock-on damage). The rate of degradation by removing N atoms is also sensitive to the current density. Hence, we demonstrate that both the electron acceleration voltage and the current density are parameters with which one can use to control the stoichiometry. Moreover, as N species were preferentially removed, the d-spacing of the carbon nitride structure increased. These findings provide a deeper understanding of g-C3N4.

摘要

二维聚合石墨相氮化碳(g-C3N4)是一种低成本材料,具有多种特性,可通过引入掺杂原子以及改变聚合度/化学计量比来增强这些特性,这为众多应用带来了显著益处。在此,我们研究了在不同电子加速电压下运行的透射电子显微镜内电子束辐照下g-C3N4的稳定性。我们的研究结果表明,g-C3N4的降解过程中,N物种比C物种更易优先被去除。然而,尚不清楚从g-C3N4中去除N的具体氮基团(C-N-C、[双键,长度如m破折号]NH或-NH2)。此外,降解速率随电子加速电压的降低而增加,这表明非弹性散射事件(辐射分解)比弹性事件(撞击损伤)占主导。通过去除N原子的降解速率对电流密度也很敏感。因此,我们证明电子加速电压和电流密度都是可用于控制化学计量比的参数。此外,由于N物种优先被去除,氮化碳结构的d间距增加。这些发现为g-C3N4提供了更深入的理解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验