Suppr超能文献

胸部 CT 图像上全自动肋骨骨折检测系统及其对放射科医生性能的影响。

A fully automated rib fracture detection system on chest CT images and its impact on radiologist performance.

机构信息

Department of Radiology, Tianjin Hospital, Tianjin, 300211, China.

Shanghai United Imaging Intelligence Co.,Ltd., Shanghai, 201210, China.

出版信息

Skeletal Radiol. 2021 Sep;50(9):1821-1828. doi: 10.1007/s00256-021-03709-8. Epub 2021 Feb 18.

Abstract

OBJECTIVE

To compare rib fracture detection and classification by radiologists using CT images with and without a deep learning model.

MATERIALS AND METHODS

A total of 8529 chest CT images were collected from multiple hospitals for training the deep learning model. The test dataset included 300 chest CT images acquired using a single CT scanner. The rib fractures were marked in the bone window on each CT slice by experienced radiologists, and the ground truth included 861 rib fractures. We proposed a heterogeneous neural network for rib fracture detection and classification consisting of a cascaded feature pyramid network and a classification network. The deep learning-based model was evaluated based on the external testing data. The precision rate, recall rate, F1-score, and diagnostic time of two junior radiologists with and without the deep learning model were computed, and the Chi-square, one-way analysis of variance, and least significant difference tests were used to analyze the results.

RESULTS

The use of the deep learning model increased detection recall and classification accuracy (0.922 and 0.863) compared with the radiologists alone (0.812 vs. 0.850). The radiologists achieved a higher precision rate, recall rate, and F1-score for fracture detection when using the deep learning model, at 0.943, 0.978, and 0.960, respectively. When using the deep learning model, the radiologist's reading time was decreased from 158.3 ± 35.7 s to 42.3 ± 6.8 s.

CONCLUSION

Radiologists achieved the highest performance in diagnosing and classifying rib fractures on CT images when assisted by the deep learning model.

摘要

目的

比较放射科医师使用 CT 图像和深度学习模型检测和分类肋骨骨折的效果。

材料与方法

从多家医院共采集了 8529 例胸部 CT 图像用于训练深度学习模型。测试数据集包括使用单一 CT 扫描仪采集的 300 例胸部 CT 图像。经验丰富的放射科医师在每个 CT 切片的骨窗上标记肋骨骨折,并在地面实况中包含 861 例肋骨骨折。我们提出了一种异构神经网络,用于肋骨骨折检测和分类,由级联特征金字塔网络和分类网络组成。基于外部测试数据评估基于深度学习的模型。计算了两名初级放射科医师在有无深度学习模型情况下的精确率、召回率、F1 评分和诊断时间,并使用卡方检验、单因素方差分析和最小显著差异检验对结果进行分析。

结果

与单独使用放射科医师相比,使用深度学习模型提高了检测召回率和分类准确率(分别为 0.922 和 0.863)。当使用深度学习模型时,放射科医师在骨折检测方面实现了更高的精确率、召回率和 F1 评分,分别为 0.943、0.978 和 0.960。使用深度学习模型时,放射科医师的阅读时间从 158.3±35.7 s 减少到 42.3±6.8 s。

结论

当放射科医师在深度学习模型的辅助下进行 CT 图像诊断和分类肋骨骨折时,可实现最高的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验