Suppr超能文献

基于深度学习的创伤患者胸部X光片中肋骨和锁骨骨折同时检测与定位模型的开发与评估

Development and evaluation of a deep learning-based model for simultaneous detection and localization of rib and clavicle fractures in trauma patients' chest radiographs.

作者信息

Cheng Chi-Tung, Kuo Ling-Wei, Ouyang Chun-Hsiang, Hsu Chi-Po, Lin Wei-Cheng, Fu Chih-Yuan, Kang Shih-Ching, Liao Chien-Hung

机构信息

Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan.

Department of medicine, Chang Gung university, Taoyuan, Taiwan.

出版信息

Trauma Surg Acute Care Open. 2024 Apr 12;9(1):e001300. doi: 10.1136/tsaco-2023-001300. eCollection 2024.

Abstract

PURPOSE

To develop a rib and clavicle fracture detection model for chest radiographs in trauma patients using a deep learning (DL) algorithm.

MATERIALS AND METHODS

We retrospectively collected 56 145 chest X-rays (CXRs) from trauma patients in a trauma center between August 2008 and December 2016. A rib/clavicle fracture detection DL algorithm was trained using this data set with 991 (1.8%) images labeled by experts with fracture site locations. The algorithm was tested on independently collected 300 CXRs in 2017. An external test set was also collected from hospitalized trauma patients in a regional hospital for evaluation. The receiver operating characteristic curve with area under the curve (AUC), accuracy, sensitivity, specificity, precision, and negative predictive value of the model on each test set was evaluated. The prediction probability on the images was visualized as heatmaps.

RESULTS

The trained DL model achieved an AUC of 0.912 (95% CI 87.8 to 94.7) on the independent test set. The accuracy, sensitivity, and specificity on the given cut-off value are 83.7, 86.8, and 80.4, respectively. On the external test set, the model had a sensitivity of 88.0 and an accuracy of 72.5. While the model exhibited a slight decrease in accuracy on the external test set, it maintained its sensitivity in detecting fractures.

CONCLUSION

The algorithm detects rib and clavicle fractures concomitantly in the CXR of trauma patients with high accuracy in locating lesions through heatmap visualization.

摘要

目的

使用深度学习(DL)算法开发一种用于创伤患者胸部X线片的肋骨和锁骨骨折检测模型。

材料与方法

我们回顾性收集了2008年8月至2016年12月期间一家创伤中心创伤患者的56145张胸部X线片(CXR)。使用该数据集训练肋骨/锁骨骨折检测DL算法,其中991张(1.8%)图像由专家标记了骨折部位。该算法在2017年独立收集的300张CXR上进行测试。还从一家地区医院的住院创伤患者中收集了一个外部测试集用于评估。评估了模型在每个测试集上的受试者操作特征曲线及其曲线下面积(AUC)、准确性、敏感性、特异性、阳性预测值和阴性预测值。将图像上的预测概率可视化为热图。

结果

训练后的DL模型在独立测试集上的AUC为0.912(95%CI 87.8至94.7)。在给定的临界值下,准确性、敏感性和特异性分别为83.7、86.8和80.4。在外部测试集上,该模型的敏感性为88.0,准确性为72.5。虽然该模型在外部测试集上的准确性略有下降,但在检测骨折方面仍保持其敏感性。

结论

该算法可在创伤患者的CXR中同时检测肋骨和锁骨骨折,通过热图可视化在定位病变方面具有较高的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验