Suppr超能文献

深度学习系统的开发和评估,用于通过计算机断层扫描定位和分类肋骨骨折。

Development and assessment of deep learning system for the location and classification of rib fractures via computed tomography.

机构信息

Department of Radiology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.

Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Ltd, R&D Center, Beijing, China.

出版信息

Eur J Radiol. 2022 Sep;154:110434. doi: 10.1016/j.ejrad.2022.110434. Epub 2022 Jul 2.

Abstract

PURPOSE

The purpose of this study was to evaluate the performance of a deep learning system for the automatic diagnosis and classification of rib fractures.

METHODS

This retrospective study analyzed computed tomography (CT) data of patients diagnosed with a rib fracture between 1 January 2019 and 23 July 2020 in two hospitals, including 591 patients from Suzhou TCM hospital and 75 patients from Jintan TCM hospital. A deep learning system (Dr.Wise@ChestFracture v1.0) based on a convolutional neural network framework was used as a diagnostic tool, and a human-model comparison experiment was designed to compare the diagnostic efficiencies of the deep learning system and radiologists. Furthermore, a secondary classification model was established to distinguish the different types of fracture. First, a classification model to differentiate between fresh and old fractures was developed. Second, a submodel to determine any misalignment in fresh fractures was established.

RESULTS

For all fracture types, the detection efficiency (recall) of the system was statistically significantly better than that of radiologists with different levels of experience (all p < 0.0167 except for senior radiologists). The F1-score of the system for diagnosing rib fractures was similar to that of the radiologists. The system was much faster than the radiologists in assessing rib fractures (all p < 0.0167). The two classification models can distinguish between fresh and old fractures (accuracy = 87.63%) and determine whether there is any misalignment in fresh fractures (accuracy = 95.22%) or not.

CONCLUSION

The use of a deep learning system can accurately, automatically, and rapidly diagnose and classify rib fractures, helping doctors improve the diagnostic efficiency and reducing their workload. The classification models can distinguish different types of rib fracture well.

摘要

目的

本研究旨在评估深度学习系统在自动诊断和分类肋骨骨折方面的性能。

方法

这是一项回顾性研究,分析了 2019 年 1 月 1 日至 2020 年 7 月 23 日期间在两家医院诊断为肋骨骨折的患者的计算机断层扫描(CT)数据,包括来自苏州中医院的 591 名患者和来自金坛中医院的 75 名患者。使用基于卷积神经网络框架的深度学习系统(Dr.Wise@ChestFracture v1.0)作为诊断工具,并设计了一个人机模型比较实验,以比较深度学习系统和放射科医生的诊断效率。此外,还建立了一个二级分类模型来区分不同类型的骨折。首先,开发了一种区分新鲜和陈旧骨折的分类模型。其次,建立了一个确定新鲜骨折是否有任何错位的子模型。

结果

对于所有骨折类型,系统的检测效率(召回率)均明显优于不同经验水平的放射科医生(除高级放射科医生外,均为 p<0.0167)。系统诊断肋骨骨折的 F1 分数与放射科医生相似。系统评估肋骨骨折的速度明显快于放射科医生(均为 p<0.0167)。两个分类模型可以区分新鲜和陈旧骨折(准确率=87.63%),并确定新鲜骨折是否有任何错位(准确率=95.22%)。

结论

使用深度学习系统可以准确、自动、快速地诊断和分类肋骨骨折,帮助医生提高诊断效率,减轻工作量。分类模型可以很好地区分不同类型的肋骨骨折。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验