Suppr超能文献

天然产物的化学酶法全合成。

Chemoenzymatic Total Synthesis of Natural Products.

机构信息

Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States.

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.

出版信息

Acc Chem Res. 2021 Mar 16;54(6):1374-1384. doi: 10.1021/acs.accounts.0c00810. Epub 2021 Feb 18.

Abstract

The total synthesis of structurally complex natural products has challenged and inspired generations of chemists and remains an exciting area of active research. Despite their history as privileged bioactivity-rich scaffolds, the use of natural products in drug discovery has waned. This shift is driven by their relatively low abundance hindering isolation from natural sources and the challenges presented by their synthesis. Recent developments in biocatalysis have resulted in the application of enzymes for the construction of complex molecules. From the inception of the Narayan lab in 2015, we have focused on harnessing the exquisite selectivity of enzymes alongside contemporary small molecule-based approaches to enable concise chemoenzymatic routes to natural products.We have focused on enzymes from various families that perform selective oxidation reactions. For example, we have targeted xyloketal natural products through a strategy that relies on a chemo- and site-selective biocatalytic hydroxylation. Members of the xyloketal family are characterized by polycyclic ketal cores and demonstrate potent neurological activity. We envisioned assembling a representative xyloketal natural product (xyloketal D) involving a biocatalytically generated -quinone methide intermediate. The non-heme iron (NHI) dependent monooxygenase ClaD was used to perform the benzylic hydroxylation of a resorcinol precursor, the product of which can undergo spontaneous loss of water to form an -quinone methide under mild conditions. This intermediate was trapped using a chiral dienophile to complete the total synthesis of xyloketal D.A second class of biocatalytic oxidation that we have employed in synthesis is the hydroxylative dearomatization of resorcinol compounds using flavin-dependent monooxygenases (FDMOs). We anticipated that the catalyst-controlled site- and stereoselectivity of FDMOs would enable the total synthesis of azaphilone natural products. Azaphilones are bioactive compounds characterized by a pyranoquinone bicyclic core and a fully substituted chiral carbon atom. We leveraged the stereodivergent reactivity of FDMOs AzaH and AfoD to achieve the enantioselective synthesis of trichoflectin enantiomers, deflectin 1a, and lunatoic acid. We also leveraged FDMOs to construct tropolone and sorbicillinoid natural products. Tropolones are a structurally diverse class of bioactive molecules characterized by an aromatic cycloheptatriene core bearing an α-hydroxyketone moiety. We developed a two-step biocatalytic cascade to the tropolone natural product stipitatic aldehyde using the FDMO TropB and a NHI monooxygenase TropC. The FDMO SorbC obtained from the sorbicillin biosynthetic pathway was used in the concise total synthesis of a urea sorbicillinoid natural product.Our long-standing interest in using enzymes to carry out C-H hydroxylation reactions has also been channeled for the late-stage diversification of complex scaffolds. For example, we have used Rieske oxygenases to hydroxylate the tricyclic core common to paralytic shellfish toxins. The systemic toxicity of these compounds can be reduced by adding hydroxyl and sulfate groups, which improves their properties and potential as therapeutic agents. The enzymes SxtT, GxtA, SxtN, and SxtSUL were used to carry out selective C-H hydroxylation and O-sulfation in saxitoxin and related structures. We conclude this Account with a discussion of existing challenges in biocatalysis and ways we can currently address them.

摘要

结构复杂的天然产物的全合成一直以来都在挑战和激励着一代又一代的化学家,并且仍然是一个非常活跃的研究领域。尽管它们作为具有生物活性的丰富支架而具有历史意义,但天然产物在药物发现中的应用已经减少。这种转变的驱动力是它们的相对低丰度阻碍了从天然来源的分离,以及它们的合成带来的挑战。最近生物催化的发展导致了酶在构建复杂分子中的应用。从 2015 年 Narayan 实验室成立之初,我们就专注于利用酶的精湛选择性,结合当代基于小分子的方法,实现天然产物的简洁化化学酶促途径。我们专注于执行选择性氧化反应的各种酶家族的酶。例如,我们通过一种依赖于化学和位点选择性生物催化羟化的策略来靶向木脂素类天然产物。木脂素类家族的成员以多环酮核为特征,并表现出强烈的神经活性。我们设想组装一个代表性的木脂素天然产物(木脂素 D),涉及生物催化生成的 - 醌甲醚中间体。非血红素铁(NHI)依赖性单加氧酶 ClaD 用于对间苯二酚前体进行苄基羟化,其产物可以在温和条件下通过自发失水形成 - 醌甲醚。使用手性二烯亲核试剂捕获该中间体,以完成木脂素 D 的全合成。我们在合成中采用的第二种生物催化氧化是使用黄素依赖性单加氧酶(FDMOs)对间苯二酚化合物进行羟基化去芳构化。我们预计 FDMOs 的催化剂控制的位点和立体选择性将能够实现氮杂菲酮天然产物的全合成。氮杂菲酮是一类具有生物活性的化合物,其特征为吡喃醌双环核心和完全取代的手性碳原子。我们利用 FDMOs AzaH 和 AfoD 的立体发散反应性,实现了 Trichoflectin 对映异构体、Deflectin 1a 和 Lunatoic Acid 的对映选择性合成。我们还利用 FDMOs 构建了色酮和索比菌素类天然产物。色酮是一类结构多样的具有生物活性的分子,其特征为带有 α-羟基酮部分的芳香环庚三烯核心。我们开发了两步生物催化级联反应,使用 FDMO TropB 和 NHI 单加氧酶 TropC,从 Tropolone 天然产物 Stipitatic Aldehyde 开始。从 sorbicillin 生物合成途径获得的 FDMO SorbC 用于简洁地全合成尿素 sorbicillin 类天然产物。我们长期以来一直有兴趣使用酶进行 C-H 羟化反应,这也为复杂支架的后期多样化提供了途径。例如,我们使用 Rieske 加氧酶对麻痹性贝类毒素共有的三环核心进行羟化。通过添加羟基和硫酸盐基团可以降低这些化合物的系统毒性,从而改善它们的性质和作为治疗剂的潜力。使用 SxtT、GxtA、SxtN 和 SxtSUL 酶对石房蛤毒素和相关结构进行选择性 C-H 羟化和 O-磺化。我们在这篇综述中以讨论生物催化中现有的挑战以及我们目前可以解决这些挑战的方法结束。

相似文献

1
Chemoenzymatic Total Synthesis of Natural Products.天然产物的化学酶法全合成。
Acc Chem Res. 2021 Mar 16;54(6):1374-1384. doi: 10.1021/acs.accounts.0c00810. Epub 2021 Feb 18.
2
C-H Hydroxylation in Paralytic Shellfish Toxin Biosynthesis.麻痹性贝类毒素生物合成中的 C-H 羟化作用。
J Am Chem Soc. 2018 Sep 19;140(37):11863-11869. doi: 10.1021/jacs.8b08901. Epub 2018 Sep 7.
5
Chemoenzymatic -Quinone Methide Formation.酶促-醌甲醚形成。
J Am Chem Soc. 2019 Dec 26;141(51):20269-20277. doi: 10.1021/jacs.9b10474. Epub 2019 Dec 16.
7
Chemoenzymatic Synthesis of (+)-Xyloketal B.(+)-木酮糖酮的酶促化学合成
Org Lett. 2023 Mar 10;25(9):1547-1552. doi: 10.1021/acs.orglett.3c00334. Epub 2023 Feb 24.

引用本文的文献

9
Engineered and total biosynthesis of fungal specialized metabolites.真菌特色代谢产物的工程化与全合成。
Nat Rev Chem. 2024 Jan;8(1):61-78. doi: 10.1038/s41570-023-00564-0. Epub 2024 Jan 3.

本文引用的文献

3
Scalable biocatalytic C-H oxyfunctionalization reactions.可扩展的生物催化 C-H 氧化官能化反应。
Chem Soc Rev. 2020 Nov 21;49(22):8137-8155. doi: 10.1039/d0cs00440e. Epub 2020 Jul 23.
5
Substrate Promiscuity of a Paralytic Shellfish Toxin Amidinotransferase.麻痹性贝类毒素脱氨酶的底物广谱性。
ACS Chem Biol. 2020 Mar 20;15(3):626-631. doi: 10.1021/acschembio.9b00964. Epub 2020 Feb 14.
7
Chemoenzymatic -Quinone Methide Formation.酶促-醌甲醚形成。
J Am Chem Soc. 2019 Dec 26;141(51):20269-20277. doi: 10.1021/jacs.9b10474. Epub 2019 Dec 16.
8
Frontiers in Biocatalysis: Profiling Function across Sequence Space.生物催化前沿:序列空间中功能的剖析
ACS Cent Sci. 2019 Nov 27;5(11):1747-1749. doi: 10.1021/acscentsci.9b01112. Epub 2019 Nov 11.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验