Suppr超能文献

利用铁和 α-酮戊二酸依赖的双加氧酶的生物催化潜力进行天然产物全合成。

Harnessing the biocatalytic potential of iron- and α-ketoglutarate-dependent dioxygenases in natural product total synthesis.

机构信息

The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.

出版信息

Nat Prod Rep. 2020 Aug 1;37(8):1065-1079. doi: 10.1039/c9np00075e. Epub 2020 Feb 14.

Abstract

Covering: up to the end of 2019Iron- and α-ketoglutarate-dependent dioxygenases (Fe/αKGs) represent a versatile and intriguing enzyme family by virtue of their ability to directly functionalize unactivated C-H bonds at the cost of αKG and O. Fe/αKGs play an important role in the biosynthesis of natural products, valuable biologically active secondary metabolites frequently pursued as drug leads. The field of natural product total synthesis seeks to contruct these molecules as effeciently as possible, although natural products continue to challenge chemists due to their intricate structural complexity. Chemoenzymatic approaches seek to remedy the shortcomings of traditional synthetic methodology by combining Nature's biosynthetic machinery with traditional chemical methods to efficiently construct natural products. Although other oxygenase families have been widely employed for this purpose, Fe/αKGs remain underutilized. The following review will cover recent chemoenzymatic total syntheses involving Fe/αKG enzymes. Additionally, related information involving natural product biosynthesis, methods development, and non-chemoenzymatic total syntheses will be discussed to inform retrosynthetic logic and synthetic design.

摘要

涵盖

截至 2019 年底,铁和 α-酮戊二酸依赖性双加氧酶(Fe/αKGs)通过直接在 αKG 和 O 的消耗下功能化未活化的 C-H 键的能力,代表了一个多功能且有趣的酶家族。Fe/αKGs 在天然产物的生物合成中发挥着重要作用,它们是具有重要价值的生物活性次级代谢产物,经常被用作药物先导化合物。天然产物全合成领域旨在尽可能高效地构建这些分子,尽管由于其复杂的结构复杂性,天然产物继续对化学家构成挑战。化学生物酶方法通过将自然界的生物合成机制与传统化学方法相结合,来有效地构建天然产物,试图弥补传统合成方法的缺点。尽管其他氧合酶家族已被广泛用于此目的,但 Fe/αKGs 的应用仍未得到充分利用。以下综述将涵盖涉及 Fe/αKG 酶的最近的化学生物酶全合成。此外,还将讨论涉及天然产物生物合成、方法开发和非化学生物酶全合成的相关信息,以为回溯合成逻辑和合成设计提供信息。

相似文献

6
Chemoenzymatic Total Synthesis of Natural Products.天然产物的化学酶法全合成。
Acc Chem Res. 2021 Mar 16;54(6):1374-1384. doi: 10.1021/acs.accounts.0c00810. Epub 2021 Feb 18.

引用本文的文献

7
Hydroxylases involved in terpenoid biosynthesis: a review.参与萜类生物合成的羟化酶:综述
Bioresour Bioprocess. 2023 Jul 13;10(1):39. doi: 10.1186/s40643-023-00656-1.
8
Enzymkatalysierte späte Modifizierungen: Besser spät als nie.酶催化的晚期修饰:晚做总比不做好。
Angew Chem Weinheim Bergstr Ger. 2021 Jul 26;133(31):16962-16993. doi: 10.1002/ange.202014931. Epub 2021 Mar 8.
9
Engineered and total biosynthesis of fungal specialized metabolites.真菌特色代谢产物的工程化与全合成。
Nat Rev Chem. 2024 Jan;8(1):61-78. doi: 10.1038/s41570-023-00564-0. Epub 2024 Jan 3.
10
Rapid discovery of terpene tailoring enzymes for total biosynthesis.用于全生物合成的萜类修饰酶的快速发现。
Chem Sci. 2023 Nov 8;14(46):13463-13467. doi: 10.1039/d3sc04172g. eCollection 2023 Nov 29.

本文引用的文献

2
Chemoenzymatic -Quinone Methide Formation.酶促-醌甲醚形成。
J Am Chem Soc. 2019 Dec 26;141(51):20269-20277. doi: 10.1021/jacs.9b10474. Epub 2019 Dec 16.
6
Scalable Biosynthesis of the Seaweed Neurochemical, Kainic Acid.海藻神经化学物质 kainic 酸的可扩展生物合成。
Angew Chem Int Ed Engl. 2019 Jun 17;58(25):8454-8457. doi: 10.1002/anie.201902910. Epub 2019 May 10.
8
Discovery of a pathway for terminal-alkyne amino acid biosynthesis.末端炔基氨基酸生物合成途径的发现。
Nature. 2019 Mar;567(7748):420-424. doi: 10.1038/s41586-019-1020-y. Epub 2019 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验