Suppr超能文献

医学图像配准及其在视网膜图像中的应用:综述

Medical image registration and its application in retinal images: a review.

作者信息

Nie Qiushi, Zhang Xiaoqing, Hu Yan, Gong Mingdao, Liu Jiang

机构信息

Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.

Center for High Performance Computing and Shenzhen Key Laboratory of Intelligent Bioinformatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

出版信息

Vis Comput Ind Biomed Art. 2024 Aug 21;7(1):21. doi: 10.1186/s42492-024-00173-8.

Abstract

Medical image registration is vital for disease diagnosis and treatment with its ability to merge diverse information of images, which may be captured under different times, angles, or modalities. Although several surveys have reviewed the development of medical image registration, they have not systematically summarized the existing medical image registration methods. To this end, a comprehensive review of these methods is provided from traditional and deep-learning-based perspectives, aiming to help audiences quickly understand the development of medical image registration. In particular, we review recent advances in retinal image registration, which has not attracted much attention. In addition, current challenges in retinal image registration are discussed and insights and prospects for future research provided.

摘要

医学图像配准对于疾病诊断和治疗至关重要,因为它能够融合在不同时间、角度或模态下获取的图像的各种信息。尽管已有多项综述回顾了医学图像配准的发展,但它们并未系统地总结现有的医学图像配准方法。为此,本文从传统方法和基于深度学习的方法两个角度对这些方法进行了全面综述,旨在帮助读者快速了解医学图像配准的发展情况。特别是,我们回顾了视网膜图像配准方面的最新进展,该领域此前未受到太多关注。此外,还讨论了视网膜图像配准当前面临的挑战,并给出了对未来研究的见解和展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88cb/11339199/022aa520559f/42492_2024_173_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验