Suppr超能文献

热电的可逆互易关系。

Reversible reciprocal relation of thermoelectricity.

作者信息

Hua Yu-Chao, Xue Ti-Wei, Guo Zeng-Yuan

机构信息

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China.

出版信息

Phys Rev E. 2021 Jan;103(1-1):012107. doi: 10.1103/PhysRevE.103.012107.

Abstract

The first Kelvin relation, which states the Peltier coefficient should be equal to the product of temperature and Seebeck coefficient, is a fundamental principle in thermoelectricity. It has been regarded as an important application and direct experimental verification of the Onsager reciprocal relation (ORR) that is a cornerstone of irreversible thermodynamics. However, some critical questions still remain: (a) why Kelvin's proof-which omits all irreversibility within a thermoelectric transport process-can reach the correct result, (b) how to properly select the generalized-force-flux pairs for deriving the first Kelvin relation from the ORR, and (c) whether the first Kelvin relation is restricted by the requirement of the linear transport regime. The aim of the present work is to answer these questions based on the fundamental thermodynamic principles. Since the thermoelectric effects are reversible, we can redefine the Seebeck and Peltier coefficients using the quantities in reversible processes with no time derivative involved; these are renamed "reversible Seebeck and Peltier coefficients." The relation between them (called "the reversible reciprocal relation of thermoelectricity") is derived from the Maxwell relations, which can be reduced to the conventional Kelvin relation, when the local equilibrium assumption (LEA) is adopted. In this sense, the validity of the first Kelvin relation is guaranteed by the reversible thermodynamic principles and the LEA, without the requirement of the linear transport process. Additionally, the generalized force-flux pairs to obtain the first Kelvin relation from the ORR can be proper both mathematically and thermodynamically, only when they correspond to the conjugate-variable pairs of which Maxwell relations can yield the reversible reciprocal relation. The present theoretical framework can be further extended to other coupled phenomena.

摘要

第一个开尔文关系表明珀尔帖系数应等于温度与塞贝克系数的乘积,它是热电学中的一个基本原理。它被视为昂萨格互易关系(ORR)的重要应用和直接实验验证,而昂萨格互易关系是不可逆热力学的基石。然而,一些关键问题仍然存在:(a)为什么开尔文的证明——它忽略了热电传输过程中的所有不可逆性——能得到正确结果;(b)如何从昂萨格互易关系中正确选择广义力 - 通量对来推导第一个开尔文关系;以及(c)第一个开尔文关系是否受线性传输 regime 要求的限制。本工作的目的是基于基本热力学原理回答这些问题。由于热电效应是可逆的,我们可以使用不涉及时间导数的可逆过程中的量来重新定义塞贝克系数和珀尔帖系数;这些被重新命名为“可逆塞贝克系数和可逆珀尔帖系数”。它们之间的关系(称为“热电学的可逆互易关系”)是从麦克斯韦关系推导出来的,当采用局部平衡假设(LEA)时,该关系可以简化为传统的开尔文关系。从这个意义上说,第一个开尔文关系的有效性由可逆热力学原理和局部平衡假设保证,而无需线性传输过程的要求。此外,只有当从昂萨格互易关系中获得第一个开尔文关系的广义力 - 通量对对应于麦克斯韦关系能产生可逆互易关系的共轭变量对时,它们在数学和热力学上才是合适的。目前的理论框架可以进一步扩展到其他耦合现象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验