Suppr超能文献

热电的可逆互易关系。

Reversible reciprocal relation of thermoelectricity.

作者信息

Hua Yu-Chao, Xue Ti-Wei, Guo Zeng-Yuan

机构信息

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China.

出版信息

Phys Rev E. 2021 Jan;103(1-1):012107. doi: 10.1103/PhysRevE.103.012107.

Abstract

The first Kelvin relation, which states the Peltier coefficient should be equal to the product of temperature and Seebeck coefficient, is a fundamental principle in thermoelectricity. It has been regarded as an important application and direct experimental verification of the Onsager reciprocal relation (ORR) that is a cornerstone of irreversible thermodynamics. However, some critical questions still remain: (a) why Kelvin's proof-which omits all irreversibility within a thermoelectric transport process-can reach the correct result, (b) how to properly select the generalized-force-flux pairs for deriving the first Kelvin relation from the ORR, and (c) whether the first Kelvin relation is restricted by the requirement of the linear transport regime. The aim of the present work is to answer these questions based on the fundamental thermodynamic principles. Since the thermoelectric effects are reversible, we can redefine the Seebeck and Peltier coefficients using the quantities in reversible processes with no time derivative involved; these are renamed "reversible Seebeck and Peltier coefficients." The relation between them (called "the reversible reciprocal relation of thermoelectricity") is derived from the Maxwell relations, which can be reduced to the conventional Kelvin relation, when the local equilibrium assumption (LEA) is adopted. In this sense, the validity of the first Kelvin relation is guaranteed by the reversible thermodynamic principles and the LEA, without the requirement of the linear transport process. Additionally, the generalized force-flux pairs to obtain the first Kelvin relation from the ORR can be proper both mathematically and thermodynamically, only when they correspond to the conjugate-variable pairs of which Maxwell relations can yield the reversible reciprocal relation. The present theoretical framework can be further extended to other coupled phenomena.

摘要

第一个开尔文关系表明珀尔帖系数应等于温度与塞贝克系数的乘积,它是热电学中的一个基本原理。它被视为昂萨格互易关系(ORR)的重要应用和直接实验验证,而昂萨格互易关系是不可逆热力学的基石。然而,一些关键问题仍然存在:(a)为什么开尔文的证明——它忽略了热电传输过程中的所有不可逆性——能得到正确结果;(b)如何从昂萨格互易关系中正确选择广义力 - 通量对来推导第一个开尔文关系;以及(c)第一个开尔文关系是否受线性传输 regime 要求的限制。本工作的目的是基于基本热力学原理回答这些问题。由于热电效应是可逆的,我们可以使用不涉及时间导数的可逆过程中的量来重新定义塞贝克系数和珀尔帖系数;这些被重新命名为“可逆塞贝克系数和可逆珀尔帖系数”。它们之间的关系(称为“热电学的可逆互易关系”)是从麦克斯韦关系推导出来的,当采用局部平衡假设(LEA)时,该关系可以简化为传统的开尔文关系。从这个意义上说,第一个开尔文关系的有效性由可逆热力学原理和局部平衡假设保证,而无需线性传输过程的要求。此外,只有当从昂萨格互易关系中获得第一个开尔文关系的广义力 - 通量对对应于麦克斯韦关系能产生可逆互易关系的共轭变量对时,它们在数学和热力学上才是合适的。目前的理论框架可以进一步扩展到其他耦合现象。

相似文献

1
Reversible reciprocal relation of thermoelectricity.热电的可逆互易关系。
Phys Rev E. 2021 Jan;103(1-1):012107. doi: 10.1103/PhysRevE.103.012107.
6
Time reversal in nonequilibrium thermodynamics.非平衡态热力学中的时间反演。
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Dec;90(6):062131. doi: 10.1103/PhysRevE.90.062131. Epub 2014 Dec 19.
7
Observation of anisotropic magneto-Peltier effect in nickel.镍中各向异性磁珀耳帖效应的观测。
Nature. 2018 Jun;558(7708):95-99. doi: 10.1038/s41586-018-0143-x. Epub 2018 May 21.
9
Clarification of Onsager reciprocal relations based on thermomass theory.基于热质量理论对昂萨格互易关系的阐明。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec;86(6 Pt 1):062101. doi: 10.1103/PhysRevE.86.062101. Epub 2012 Dec 3.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验