Suppr超能文献

开发用于长期原位细胞膜生物成像的近红外沉淀荧光染料的从头策略。

A de novo strategy to develop NIR precipitating fluorochrome for long-term in situ cell membrane bioimaging.

机构信息

Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China.

The Key Laboratory of Analysis and Detection Technology for Food Safety of the Ministry of Education, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, 350002 Fuzhou, P. R. China.

出版信息

Proc Natl Acad Sci U S A. 2021 Feb 23;118(8). doi: 10.1073/pnas.2018033118.

Abstract

Cell membrane-targeted bioimaging is a prerequisite for studying the roles of membrane-associated biomolecules in various physiological and pathological processes. However, long-term in situ bioimaging on the cell membrane with conventional fluorescent probes leads to diffusion into cells from the membrane surface. Therefore, we herein proposed a de novo strategy to construct an antidiffusion probe by integrating a fluorochrome characterized by strong hydrophobicity and low lipophilicity, with an enzyme substrate to meet this challenge. This precipitating fluorochrome HYPQ was designed by conjugating the traditionally strong hydrophobic solid-state fluorochrome 6-chloro-2-(2-hydroxyphenyl) quinazolin-4(3H)-one (HPQ) with a 2-(2-methyl-4H-chromen-4-ylidene) malononitrile group to obtain closer stacking to lower lipophilicity and elongate emission to the far-red to near-infrared wavelength. As proof-of-concept, the membrane-associated enzyme γ-glutamyltranspeptidase (GGT) was selected as a model enzyme to design the antidiffusion probe HYPQG. Then, benefiting from the precipitating and stable signal properties of HYPQ, in situ imaging of GGT on the membrane was successfully realized. Moreover, after HYPQG was activated by GGT, the fluorescence signal on the cell membrane remained unchanged, with incubation time even extending to 6 h, which is significant for in situ monitoring of enzymatic activity. In vivo testing subsequently showed that the tumor region could be accurately defined by this probe after long-term in situ imaging of tumor-bearing mice. The excellent performance of HYPQ indicates that it may be an ideal alternative for constructing universal antidiffusion fluorescent probes, potentially providing an efficient tool for accurate imaging-guided surgery in the future.

摘要

细胞膜靶向生物成像技术是研究膜相关生物分子在各种生理和病理过程中作用的前提。然而,传统荧光探针在细胞膜上进行长期原位生物成像会导致荧光从膜表面扩散到细胞内。因此,我们提出了一种新的策略,通过将具有强疏水性和低亲脂性的荧光团与酶底物结合,构建一种抗扩散探针。这种沉淀型荧光团 HYPQ 是通过将传统的强疏水性固态荧光团 6-氯-2-(2-羟基苯基)喹唑啉-4(3H)-酮(HPQ)与 2-(2-甲基-4H-色烯-4-亚基)丙二腈基团偶联来设计的,以获得更紧密的堆积,从而降低亲脂性,并将发射延长至远红至近红外波长。作为概念验证,选择膜相关酶 γ-谷氨酰转肽酶(GGT)作为模型酶来设计抗扩散探针 HYPQG。然后,受益于 HYPQ 的沉淀和稳定的信号特性,成功实现了 GGT 在膜上的原位成像。此外,在 HYPQG 被 GGT 激活后,细胞膜上的荧光信号保持不变,孵育时间甚至延长至 6 小时,这对于酶活性的原位监测具有重要意义。体内测试随后表明,该探针可以在对荷瘤小鼠进行长期原位成像后准确定义肿瘤区域。HYPQ 的优异性能表明,它可能是构建通用抗扩散荧光探针的理想替代品,有望为未来准确的成像引导手术提供有效的工具。

相似文献

1
A de novo strategy to develop NIR precipitating fluorochrome for long-term in situ cell membrane bioimaging.
Proc Natl Acad Sci U S A. 2021 Feb 23;118(8). doi: 10.1073/pnas.2018033118.
2
In Situ Imaging of Furin Activity with a Highly Stable Probe by Releasing of Precipitating Fluorochrome.
Anal Chem. 2018 Oct 2;90(19):11680-11687. doi: 10.1021/acs.analchem.8b03335. Epub 2018 Sep 19.
3
In vivo tumor imaging by a γ-glutamyl transpeptidase-activatable near-infrared fluorescent probe.
Anal Bioanal Chem. 2018 Oct;410(26):6771-6777. doi: 10.1007/s00216-018-1181-9. Epub 2018 Jun 16.
6
Imaging γ-Glutamyltranspeptidase for tumor identification and resection guidance via enzyme-triggered fluorescent probe.
Biomaterials. 2018 Oct;179:1-14. doi: 10.1016/j.biomaterials.2018.06.028. Epub 2018 Jun 21.
8
Activatable Near-Infrared Probe for Fluorescence Imaging of γ-Glutamyl Transpeptidase in Tumor Cells and In Vivo.
Chemistry. 2017 Oct 20;23(59):14778-14785. doi: 10.1002/chem.201702210. Epub 2017 Aug 18.
9
In Vivo Visualization of γ-Glutamyl Transpeptidase Activity with an Activatable Self-Immobilizing Near-Infrared Probe.
Anal Chem. 2020 Nov 17;92(22):15017-15024. doi: 10.1021/acs.analchem.0c02954. Epub 2020 Nov 3.

引用本文的文献

1
Recent advances in self-immobilizing fluorescent probes for in vivo imaging.
Smart Mol. 2024 Aug 23;2(3):e20240031. doi: 10.1002/smo.20240031. eCollection 2024 Sep.
3
Debut of enzyme-responsive anionic cyanine for overlap-free NIR-II-to-I dual-channel tumour imaging.
Chem Sci. 2025 Feb 6;16(10):4490-4500. doi: 10.1039/d4sc06459c. eCollection 2025 Mar 5.
4
Water solubility and folate receptor affinity-driven plasma membrane-targeted carbon dots for cancer cell imaging.
RSC Adv. 2024 Oct 31;14(47):34816-34822. doi: 10.1039/d4ra03337j. eCollection 2024 Oct 29.
7
High-precision detection and navigation surgery of colorectal cancer micrometastases.
J Nanobiotechnology. 2023 Nov 2;21(1):403. doi: 10.1186/s12951-023-02171-z.
9
Organic Semiconducting Nanoparticles for Biosensor: A Review.
Biosensors (Basel). 2023 Apr 21;13(4):494. doi: 10.3390/bios13040494.

本文引用的文献

1
2
Stable Olympicenyl Radicals and Their π-Dimers.
J Am Chem Soc. 2020 Jun 24;142(25):11022-11031. doi: 10.1021/jacs.0c02287. Epub 2020 Jun 10.
5
An AIE-Based Probe for Rapid and Ultrasensitive Imaging of Plasma Membranes in Biosystems.
Angew Chem Int Ed Engl. 2020 Jun 15;59(25):9962-9966. doi: 10.1002/anie.201909498. Epub 2019 Sep 18.
6
Switchable Solvatochromic Probes for Live-Cell Super-resolution Imaging of Plasma Membrane Organization.
Angew Chem Int Ed Engl. 2019 Oct 14;58(42):14920-14924. doi: 10.1002/anie.201907690. Epub 2019 Aug 27.
7
Recognition Moieties of Small Molecular Fluorescent Probes for Bioimaging of Enzymes.
Acc Chem Res. 2019 Jul 16;52(7):1892-1904. doi: 10.1021/acs.accounts.9b00214. Epub 2019 Jun 20.
9
Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance.
Chem Rev. 2019 May 8;119(9):5607-5774. doi: 10.1021/acs.chemrev.8b00538. Epub 2019 Mar 12.
10
A cell membrane-anchored fluorescent probe for monitoring carbon monoxide release from living cells.
Chem Sci. 2018 Oct 10;10(1):320-325. doi: 10.1039/c8sc03584a. eCollection 2019 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验