文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

原发性黑色素瘤的肿瘤基因表达特征可预测长期预后。

Tumour gene expression signature in primary melanoma predicts long-term outcomes.

机构信息

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, UK.

Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK.

出版信息

Nat Commun. 2021 Feb 18;12(1):1137. doi: 10.1038/s41467-021-21207-2.


DOI:10.1038/s41467-021-21207-2
PMID:33602918
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7893180/
Abstract

Adjuvant systemic therapies are now routinely used following resection of stage III melanoma, however accurate prognostic information is needed to better stratify patients. We use differential expression analyses of primary tumours from 204 RNA-sequenced melanomas within a large adjuvant trial, identifying a 121 metastasis-associated gene signature. This signature strongly associated with progression-free (HR = 1.63, p = 5.24 × 10) and overall survival (HR = 1.61, p = 1.67 × 10), was validated in 175 regional lymph nodes metastasis as well as two externally ascertained datasets. The machine learning classification models trained using the signature genes performed significantly better in predicting metastases than models trained with clinical covariates (p = 7.03 × 10), or published prognostic signatures (p < 0.05). The signature score negatively correlated with measures of immune cell infiltration (ρ = -0.75, p < 2.2 × 10), with a higher score representing reduced lymphocyte infiltration and a higher 5-year risk of death in stage II melanoma. Our expression signature identifies melanoma patients at higher risk of metastases and warrants further evaluation in adjuvant clinical trials.

摘要

辅助全身治疗现在已常规用于 III 期黑色素瘤切除术后,但需要准确的预后信息来更好地分层患者。我们使用来自大型辅助试验的 204 个 RNA 测序黑色素瘤的原发肿瘤差异表达分析,确定了 121 个与转移相关的基因特征。该特征与无进展生存(HR=1.63,p=5.24×10)和总生存(HR=1.61,p=1.67×10)强烈相关,在 175 个区域淋巴结转移和另外两个外部确定的数据集得到验证。使用特征基因训练的机器学习分类模型在预测转移方面明显优于使用临床协变量(p=7.03×10)或已发表的预后特征(p<0.05)训练的模型。该特征评分与免疫细胞浸润的衡量标准呈负相关(ρ=-0.75,p<2.2×10),评分越高代表淋巴细胞浸润减少,II 期黑色素瘤患者的 5 年死亡率越高。我们的表达特征确定了具有更高转移风险的黑色素瘤患者,值得在辅助临床试验中进一步评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/044e/7893180/1de9cdbeb43e/41467_2021_21207_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/044e/7893180/a553e452252a/41467_2021_21207_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/044e/7893180/0f9710b5d4e4/41467_2021_21207_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/044e/7893180/84795fc1b625/41467_2021_21207_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/044e/7893180/b72e5d9bb6e6/41467_2021_21207_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/044e/7893180/1de9cdbeb43e/41467_2021_21207_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/044e/7893180/a553e452252a/41467_2021_21207_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/044e/7893180/0f9710b5d4e4/41467_2021_21207_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/044e/7893180/84795fc1b625/41467_2021_21207_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/044e/7893180/b72e5d9bb6e6/41467_2021_21207_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/044e/7893180/1de9cdbeb43e/41467_2021_21207_Fig5_HTML.jpg

相似文献

[1]
Tumour gene expression signature in primary melanoma predicts long-term outcomes.

Nat Commun. 2021-2-18

[2]
A time course-dependent metastatic gene expression signature predicts outcome in human metastatic melanomas.

Diagn Pathol. 2014-8-13

[3]
A miRNA-Based Signature Detected in Primary Melanoma Tissue Predicts Development of Brain Metastasis.

Clin Cancer Res. 2015-11-1

[4]
Predicting the clinical outcome of melanoma using an immune-related gene pairs signature.

PLoS One. 2020-10-8

[5]
Adjuvant dabrafenib plus trametinib versus placebo in patients with resected, BRAF-mutant, stage III melanoma (COMBI-AD): exploratory biomarker analyses from a randomised, phase 3 trial.

Lancet Oncol. 2020-1-30

[6]
A nine-gene signature predicting clinical outcome in cutaneous melanoma.

J Cancer Res Clin Oncol. 2012-10-9

[7]
Machine learning-based identification of an immunotherapy-related signature to enhance outcomes and immunotherapy responses in melanoma.

Front Immunol. 2024-9-17

[8]
Translation of a circulating miRNA signature of melanoma into a solid tissue assay to improve diagnostic accuracy and precision.

Biomark Med. 2021-9

[9]
Identification and Validation of a Tumor Microenvironment-Related Gene Signature for Prognostic Prediction in Advanced-Stage Non-Small-Cell Lung Cancer.

Biomed Res Int. 2021

[10]
Development and Validation of an Individualized Immune Prognostic Signature in Early-Stage Nonsquamous Non-Small Cell Lung Cancer.

JAMA Oncol. 2017-11-1

引用本文的文献

[1]
Improved prediction of MAPKi response duration in melanoma patients using genomic data and machine learning.

NPJ Precis Oncol. 2025-7-9

[2]
An -Based Biomarker Combination Accurately Predicts Melanoma Patient Survival.

Int J Mol Sci. 2025-2-18

[3]
Integrated Analysis of Single-Cell and Bulk RNA Data Reveals Complexity and Significance of the Melanoma Interactome.

Cancers (Basel). 2025-1-5

[4]
The Dutch Early-Stage Melanoma (D-ESMEL) study: a discovery set and validation cohort to predict the absolute risk of distant metastases in stage I/II cutaneous melanoma.

Eur J Epidemiol. 2025-1

[5]
Challenges in Adjuvant Immunotherapy after Resection or Ablation for Hepatocellular Carcinoma at High-Risk of Recurrence.

Liver Cancer. 2024-10-24

[6]
RNA-seq validation of microRNA expression signatures for precision melanoma diagnosis and prognostic stratification.

BMC Med Genomics. 2024-10-25

[7]
Higher Nodal expression is often associated with poorer survival in patients diagnosed with melanoma and treated with anti-PD1 therapy.

Pathol Oncol Res. 2024

[8]
Clarifying new molecular subtyping and precise treatment of melanoma based on disulfidptosis-related lncRNA signature.

Eur J Med Res. 2024-9-28

[9]
Tislelizumab plus cetuximab and irinotecan in refractory microsatellite stable and RAS wild-type metastatic colorectal cancer: a single-arm phase 2 study.

Nat Commun. 2024-8-23

[10]
Establishment of a CD8+ T cells-related prognostic risk model for acral melanoma based on single-cell and bulk RNA sequencing.

Skin Res Technol. 2024-8

本文引用的文献

[1]
Molecular analysis of primary melanoma T cells identifies patients at risk for metastatic recurrence.

Nat Cancer. 2020-2

[2]
Gene Expression Profile Testing for Thin Melanoma: Evidence to Support Clinical Use Remains Thin.

JAMA Dermatol. 2020-8-1

[3]
New survival standards for advanced melanoma.

Br J Cancer. 2020-2-17

[4]
Cancer statistics, 2020.

CA Cancer J Clin. 2020-1-8

[5]
Phase III Study of Adjuvant Ipilimumab (3 or 10 mg/kg) Versus High-Dose Interferon Alfa-2b for Resected High-Risk Melanoma: North American Intergroup E1609.

J Clin Oncol. 2019-12-27

[6]
KEYNOTE-716: Phase III study of adjuvant pembrolizumab versus placebo in resected high-risk stage II melanoma.

Future Oncol. 2019-12-24

[7]
Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study.

Lancet Oncol. 2019-7-22

[8]
Guidance of sentinel lymph node biopsy decisions in patients with T1-T2 melanoma using gene expression profiling.

Future Oncol. 2019-1-29

[9]
Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences.

Bioinformatics. 2019-6-1

[10]
Adjuvant bevacizumab for melanoma patients at high risk of recurrence: survival analysis of the AVAST-M trial.

Ann Oncol. 2018-8-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索