Institut für Mathematische Modellierung Biologischer Systeme, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
Systembiologie des Fettstoffwechsels, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
PLoS One. 2021 Feb 19;16(2):e0247376. doi: 10.1371/journal.pone.0247376. eCollection 2021.
All metazoans are colonized by a complex and diverse set of microorganisms. The microbes colonize all parts of the body and are especially abundant in the gastrointestinal tract, where they constitute the gut microbiome. The fruit fly Drosophila melanogaster turned out to be an exquisite model organism to functionally test the importance of an intact gut microbiome. Still, however, fundamental questions remain unanswered. For example, it is unknown whether a fine-tuned regionalization of the gut microbiome exists and how such a spatial organization could be established. In order to pave the way for answering this question, we generated an optimized and adapted fluorescence in situ hybridization (FISH) protocol. We focused on the detection of the two major Drosophila gut microbiome constituting bacteria genera: Acetobacter and Lactobacillus. FISH allows to detect the bacteria in situ and thus to investigate their spatial localization in respect to the host as well as to other microbiome members. We demonstrate the applicability of the protocol using a diverse set of sample types.
所有后生动物都被一组复杂多样的微生物定植。这些微生物定植于身体的各个部位,在胃肠道中尤其丰富,在那里它们构成了肠道微生物组。黑腹果蝇 Drosophila melanogaster 被证明是一个极好的模式生物,可以在功能上测试完整的肠道微生物组的重要性。然而,仍然存在一些基本问题尚未得到解答。例如,尚不清楚肠道微生物组是否存在精细的区域化,以及这种空间组织如何建立。为了为回答这个问题铺平道路,我们生成了一个经过优化和适应的荧光原位杂交 (FISH) 方案。我们专注于检测两种主要的果蝇肠道微生物组构成细菌属:醋酸杆菌属和乳杆菌属。FISH 允许原位检测细菌,从而可以研究它们相对于宿主以及其他微生物组成员的空间定位。我们使用多种不同的样本类型证明了该方案的适用性。