Suppr超能文献

真核生物王国的基因组规模系统发育。

A genome-scale phylogeny of the kingdom Fungi.

机构信息

Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.

Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.

出版信息

Curr Biol. 2021 Apr 26;31(8):1653-1665.e5. doi: 10.1016/j.cub.2021.01.074. Epub 2021 Feb 18.

Abstract

Phylogenomic studies using genome-scale amounts of data have greatly improved understanding of the tree of life. Despite the diversity, ecological significance, and biomedical and industrial importance of fungi, evolutionary relationships among several major lineages remain poorly resolved, especially those near the base of the fungal phylogeny. To examine poorly resolved relationships and assess progress toward a genome-scale phylogeny of the fungal kingdom, we compiled a phylogenomic data matrix of 290 genes from the genomes of 1,644 species that includes representatives from most major fungal lineages. We also compiled 11 data matrices by subsampling genes or taxa from the full data matrix based on filtering criteria previously shown to improve phylogenomic inference. Analyses of these 12 data matrices using concatenation- and coalescent-based approaches yielded a robust phylogeny of the fungal kingdom, in which ∼85% of internal branches were congruent across data matrices and approaches used. We found support for several historically poorly resolved relationships as well as evidence for polytomies likely stemming from episodes of ancient diversification. By examining the relative evolutionary divergence of taxonomic groups of equivalent rank, we found that fungal taxonomy is broadly aligned with both genome sequence divergence and divergence time but also identified lineages where current taxonomic circumscription does not reflect their levels of evolutionary divergence. Our results provide a robust phylogenomic framework to explore the tempo and mode of fungal evolution and offer directions for future fungal phylogenetic and taxonomic studies.

摘要

基于基因组规模数据的系统发育基因组学研究极大地增进了我们对生命之树的理解。尽管真菌具有多样性、生态意义、以及在生物医学和工业方面的重要性,但几个主要谱系之间的进化关系仍未得到很好的解决,特别是在真菌系统发育树的基部附近。为了研究解决关系欠佳的问题,并评估在真菌界的基因组规模系统发育方面取得的进展,我们编译了一个由 290 个基因组成的系统发育基因组学数据矩阵,这些基因来自 1644 个物种的基因组,其中包括大多数主要真菌谱系的代表。我们还根据先前显示可改善系统发育推断的过滤标准,从全数据矩阵中抽样基因或分类群,编译了 11 个数据矩阵。使用连接体和基于合并的方法对这 12 个数据矩阵进行分析,得到了真菌界的一个稳健的系统发育树,其中约 85%的内部分支在数据矩阵和使用的方法上是一致的。我们为几个历史上关系不佳的关系提供了支持,也为可能源自古老多样化事件的多系关系提供了证据。通过检查具有同等等级的分类群的相对进化分歧,我们发现真菌分类学与基因组序列分歧和分歧时间大致一致,但也发现了一些分类群,其当前的分类学范围并不能反映其进化分歧的水平。我们的研究结果为探索真菌进化的节奏和模式提供了一个稳健的系统发育基因组学框架,并为未来的真菌系统发育和分类学研究提供了方向。

相似文献

1
A genome-scale phylogeny of the kingdom Fungi.
Curr Biol. 2021 Apr 26;31(8):1653-1665.e5. doi: 10.1016/j.cub.2021.01.074. Epub 2021 Feb 18.
2
A taxon-rich and genome-scale phylogeny of Opisthokonta.
PLoS Biol. 2024 Sep 16;22(9):e3002794. doi: 10.1371/journal.pbio.3002794. eCollection 2024 Sep.
6
The gene tree delusion.
Mol Phylogenet Evol. 2016 Jan;94(Pt A):1-33. doi: 10.1016/j.ympev.2015.07.018. Epub 2015 Jul 31.
8
Reconstructing the Backbone of the Saccharomycotina Yeast Phylogeny Using Genome-Scale Data.
G3 (Bethesda). 2016 Dec 7;6(12):3927-3939. doi: 10.1534/g3.116.034744.
9
A consistent phylogenetic backbone for the fungi.
Mol Biol Evol. 2012 May;29(5):1319-34. doi: 10.1093/molbev/msr285. Epub 2011 Nov 22.

引用本文的文献

1
NALCN/Cch1 channelosome subunits originated in early eukaryotes.
J Gen Physiol. 2025 Nov 3;157(6). doi: 10.1085/jgp.202413636. Epub 2025 Sep 5.
3
From Morphology to Multi-Omics: A New Age of Fusarium Research.
Pathogens. 2025 Aug 1;14(8):762. doi: 10.3390/pathogens14080762.
5
A comprehensive multigene phylogeny of (, ), with an emphasis on tropical African species.
Persoonia. 2025 Jun;54:1-46. doi: 10.3114/persoonia.2025.54.01. Epub 2025 Apr 4.
6
A new alignment-free method: K-mer Subsequence Natural Vector (K-mer SNV) for classification of fungi.
BMC Bioinformatics. 2025 Jul 9;26(1):170. doi: 10.1186/s12859-025-06152-x.
8
A bibliometric analysis of fungal volatile organic compounds.
Fungal Biol Biotechnol. 2025 Jul 2;12(1):12. doi: 10.1186/s40694-025-00203-x.
9
A genomic perspective on fungal diversity and evolution.
Nat Rev Microbiol. 2025 Jun 30. doi: 10.1038/s41579-025-01195-6.
10
Characterisation of the genome and secretome of and .
IMA Fungus. 2025 Jun 10;16:e156195. doi: 10.3897/imafungus.16.156195. eCollection 2025.

本文引用的文献

1
Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota.
Nat Commun. 2021 Aug 17;12(1):4973. doi: 10.1038/s41467-021-25308-w.
3
An investigation of irreproducibility in maximum likelihood phylogenetic inference.
Nat Commun. 2020 Nov 30;11(1):6096. doi: 10.1038/s41467-020-20005-6.
4
Feature frequency profile-based phylogenies are inaccurate.
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31580-31581. doi: 10.1073/pnas.2013143117. Epub 2020 Nov 24.
5
Genome-scale phylogeny and contrasting modes of genome evolution in the fungal phylum Ascomycota.
Sci Adv. 2020 Nov 4;6(45). doi: 10.1126/sciadv.abd0079. Print 2020 Nov.
6
Cell wall glucans of fungi. A review.
Cell Surf. 2019 Mar 21;5:100022. doi: 10.1016/j.tcsw.2019.100022. eCollection 2019 Dec.
8
Toward a Fully Resolved Fungal Tree of Life.
Annu Rev Microbiol. 2020 Sep 8;74:291-313. doi: 10.1146/annurev-micro-022020-051835. Epub 2020 Jul 13.
9
101 genomes: A test case for predicting lifestyles and emergence of pathogens.
Stud Mycol. 2020 Feb 1;96:141-153. doi: 10.1016/j.simyco.2020.01.003. eCollection 2020 Jun.
10
IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era.
Mol Biol Evol. 2020 May 1;37(5):1530-1534. doi: 10.1093/molbev/msaa015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验