Molecular Genetics Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Dev Biol. 2021 May;473:119-129. doi: 10.1016/j.ydbio.2021.02.005. Epub 2021 Feb 16.
Retinoic acid (RA) signaling is required to restrict heart size through limiting the posterior boundary of the vertebrate cardiac progenitor field within the anterior lateral plate mesoderm (ALPM). However, we still do not fully understand how different cardiac progenitor populations that contribute to the developing heart, including earlier-differentiating first heart field (FHF), later-differentiating second heart field (SHF), and neural crest-derived progenitors, are each affected in RA-deficient embryos. Here, we quantified the number of cardiac progenitors and differentiating cardiomyocytes (CMs) in RA-deficient zebrafish embryos. While Nkx2.5+ cells were increased overall in the nascent hearts of RA-deficient embryos, unexpectedly, we found that the major effect within this population was a significant expansion in the number of differentiating FHF CMs. In contrast to the expansion of the FHF, there was a progressive decrease in SHF progenitors at the arterial pole as the heart tube elongated. Temporal differentiation assays and immunostaining in RA-deficient embryos showed that the outflow tracts (OFTs) of the hearts were significantly smaller, containing fewer differentiated SHF-derived ventricular CMs and a complete absence of SHF-derived smooth muscle at later stages. At the venous pole of the heart, pacemaker cells of the sinoatrial node also failed to differentiate in RA-deficient embryos. Interestingly, genetic lineage tracing showed that the number of neural-crest derived CMs was not altered within the enlarged hearts of RA-deficient zebrafish embryos. Altogether, our data show that the enlarged hearts in RA-deficient zebrafish embryos are comprised of an expansion in earlier differentiating FHF-derived CMs coupled with a progressive depletion of the SHF, suggesting RA signaling determines the relative ratios of earlier- and later-differentiation cardiac progenitors within an expanded cardiac progenitor pool.
视黄酸(RA)信号对于限制心脏大小是必需的,它通过限制脊椎动物心脏祖细胞场在侧板中胚层(ALPM)的前外侧的后部边界来实现。然而,我们仍然不完全理解不同的心脏祖细胞群体如何受到影响,这些群体包括早期分化的第一心脏场(FHF)、后期分化的第二心脏场(SHF)和神经嵴衍生的祖细胞,这些群体都有助于心脏的发育。在这里,我们量化了 RA 缺陷型斑马鱼胚胎中心脏祖细胞和分化的心肌细胞(CM)的数量。虽然 Nkx2.5+细胞在 RA 缺陷型胚胎的新生心脏中总体上增加了,但出乎意料的是,我们发现该群体中的主要影响是分化的 FHF CM 的数量显著增加。与 FHF 的扩张相反,随着心脏管的伸长,动脉极处的 SHF 祖细胞逐渐减少。在 RA 缺陷型胚胎中的时间分化测定和免疫染色显示,心脏的流出道(OFT)明显较小,包含较少分化的 SHF 衍生的心室 CM,并且在后期完全没有 SHF 衍生的平滑肌。在心脏的静脉极,窦房结的起搏细胞也未能在 RA 缺陷型胚胎中分化。有趣的是,遗传谱系追踪显示,在 RA 缺陷型斑马鱼胚胎中,神经嵴衍生的 CM 的数量在增大的心脏中没有改变。总的来说,我们的数据表明,RA 缺陷型斑马鱼胚胎中增大的心脏是由早期分化的 FHF 衍生的 CM 的扩张与 SHF 的逐渐耗竭组成的,这表明 RA 信号决定了在扩大的心脏祖细胞库中早期和晚期分化心脏祖细胞的相对比例。