Suppr超能文献

网络心理计量学方法在早期阿尔茨海默病神经认知中的应用。

A network psychometric approach to neurocognition in early Alzheimer's disease.

机构信息

South Wales Doctoral Programme in Clinical Psychology, Cardiff University, Wales, United Kingdom.

South Wales Doctoral Programme in Clinical Psychology, Cardiff University, Wales, United Kingdom.

出版信息

Cortex. 2021 Apr;137:61-73. doi: 10.1016/j.cortex.2021.01.002. Epub 2021 Jan 26.

Abstract

In a typical pattern of Alzheimer's disease onset, episodic memory decline is predominant while decline in other neurocognitive domains is subsidiary or absent. Such descriptions refer to relationships between neurocognitive domains as well as deficits within domains. However, the former relationships are rarely statistically modelled. This study used psychometric network analysis to model relationships between neurocognitive variables in cognitive normality (CN), amnestic mild cognitive impairment (aMCI), and early Alzheimer's disease (eAD). Gaussian graphical models with extended Bayesian information criterion graphical lasso model selection and regularisation were used to estimate network models of neurocognitive and demographic variables in CN (n = 229), aMCI (n = 395), and eAD (n = 191) groups. The edge density, network strength and structure, centrality, and individual links of the network models were explored. Results indicated that while global strength did not differ, network structures differed across CN and eAD and aMCI and eAD groups, suggesting neurocognitive reorganisation across the eAD continuum. Episodic memory variables were most central (i.e., influential) in the aMCI network model, whereas processing speed and fluency variables were most central in the eAD network model. Additionally, putative clusters of memory, language and semantic variables, and attention, processing speed and working memory variables arose in the models for the clinical groups. This exploratory study shows how psychometric network analysis can be used to model the relationships between neurocognitive variables across the eAD continuum and to generate hypotheses for future (dis)confirmatory research.

摘要

在阿尔茨海默病发病的典型模式中,情景记忆减退占主导地位,而其他神经认知领域的减退则是次要的或不存在的。这些描述指的是神经认知领域之间的关系以及领域内的缺陷。然而,这些关系很少在统计学上建模。本研究使用心理测量网络分析来对认知正常(CN)、遗忘型轻度认知障碍(aMCI)和早期阿尔茨海默病(eAD)中的神经认知变量之间的关系进行建模。使用扩展贝叶斯信息准则图形套索模型选择和正则化的高斯图形模型来估计 CN(n=229)、aMCI(n=395)和 eAD(n=191)组中神经认知和人口统计学变量的网络模型。探讨了网络模型的边缘密度、网络强度和结构、中心性和个体连接。结果表明,虽然全局强度没有差异,但 CN 和 eAD 以及 aMCI 和 eAD 组的网络结构不同,这表明整个 eAD 连续体的神经认知重新组织。情景记忆变量在 aMCI 网络模型中最具中心性(即影响力),而在 eAD 网络模型中处理速度和流畅性变量最具中心性。此外,在临床组的模型中出现了记忆、语言和语义变量以及注意力、处理速度和工作记忆变量的假定聚类。这项探索性研究展示了心理测量网络分析如何能够用于在 eAD 连续体中对神经认知变量之间的关系进行建模,并为未来的(确认性)研究生成假设。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验