Suppr超能文献

从轻度认知障碍到痴呆的进展特征:纵向临床就诊的网络分析。

Characterizing the progression from mild cognitive impairment to dementia: a network analysis of longitudinal clinical visits.

机构信息

Department of Artificial Intelligence & Informatics, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.

College of Medicine, University of Florida, Gainesville, FL, USA.

出版信息

BMC Med Inform Decis Mak. 2024 Oct 18;24(1):305. doi: 10.1186/s12911-024-02711-z.

Abstract

BACKGROUND

With the recent surge in the utilization of electronic health records for cognitive decline, the research community has turned its attention to conducting fine-grained analyses of dementia onset using advanced techniques. Previous works have mostly focused on machine learning-based prediction of dementia, lacking the analysis of dementia progression and its associations with risk factors over time. The black box nature of machine learning models has also raised concerns regarding their uncertainty and safety in decision making, particularly in sensitive domains like healthcare.

OBJECTIVE

We aimed to characterize the progression of health conditions, such as chronic diseases and neuropsychiatric symptoms, of the participants in Mayo Clinic Study of Aging (MCSA) from initial mild cognitive impairment (MCI) diagnosis to dementia onset through network analysis.

METHODS

We used the data from the MCSA, a prospective population-based cohort study of cognitive aging, and examined the changing association among variables (i.e., participants' health conditions) from the first visit of MCI diagnosis to the visit of dementia onset using network analysis. The number of participants for this study are 97 with the number of visits ranging from 2 visits (30 months) to 7 visits (105 months). We identified the network communities among variables from three-fold collection of instances: (i) the first MCI diagnosis, (ii) progression to dementia, and (iii) dementia diagnosis. We determine the variables that play a significant role in the dementia onset, aiming to identify and prioritize specific variables that prominently contribute towards developing dementia. In addition, we explore the sex-specific impact of variables in relation to dementia, aiming to investigate potential differences in the influence of certain variables on dementia onset between males and females.

RESULTS

We found correlation among certain variables, such as neuropsychiatric symptoms and chronic conditions, throughout the progression from MCI to dementia. Our findings, based on patterns and changing variables within specific communities, reveal notable insights about the time-lapse before dementia sets in, and the significance of progression of correlated variables contributing towards dementia onset. We also observed more changes due to certain variables, such as cognitive and functional scores, in the network communities for the people who progressed to dementia compared to those who does not. Most changes for sex-specific analysis are observed in clinical dementia rating and functional activities questionnaire during MCI onset are followed by chronic diseases, and then by NPI-Q scores.

CONCLUSIONS

Network analysis has shown promising potential to capture significant longitudinal changes in health conditions, spanning from the MCI diagnosis to dementia progression. It can serve as a valuable analytic approach for monitoring the health status of individuals in cognitive impairment assessment. Furthermore, our findings indicate a notable sex difference in the impact of specific health conditions on the progression of dementia.

摘要

背景

随着电子健康记录在认知能力下降方面的应用日益普及,研究人员开始关注使用先进技术对痴呆症发病进行更精细的分析。以前的工作主要集中在基于机器学习的痴呆症预测上,缺乏对痴呆症进展及其随时间变化与风险因素的相关性的分析。机器学习模型的黑箱性质也引起了人们对其在决策中的不确定性和安全性的担忧,尤其是在医疗保健等敏感领域。

目的

我们旨在通过网络分析来描述 Mayo 诊所衰老研究(MCSA)中参与者的健康状况(如慢性病和神经精神症状)从最初的轻度认知障碍(MCI)诊断到痴呆症发病的进展情况。

方法

我们使用 MCSA 的数据,这是一项关于认知衰老的前瞻性人群队列研究,我们使用网络分析从 MCI 诊断的第一次就诊到痴呆症发病的就诊,检查变量(即参与者的健康状况)之间变化的关联。本研究的参与者有 97 人,就诊次数从 2 次(30 个月)到 7 次(105 个月)不等。我们从三部分实例中识别变量之间的网络社区:(i)第一次 MCI 诊断,(ii)进展为痴呆症,和(iii)痴呆症诊断。我们确定在痴呆症发病中起重要作用的变量,旨在确定并优先考虑对痴呆症发展有显著贡献的特定变量。此外,我们还探讨了与痴呆症相关的变量的性别特异性影响,旨在研究某些变量对男性和女性痴呆症发病的影响是否存在差异。

结果

我们发现,在从 MCI 到痴呆症的进展过程中,某些变量(如神经精神症状和慢性疾病)之间存在相关性。我们的研究结果基于特定社区内的模式和变化变量,揭示了痴呆症发病前的时间推移以及相关变量进展对痴呆症发病的贡献的显著性。我们还观察到,与没有进展为痴呆症的人相比,进展为痴呆症的人在网络社区中,由于某些变量(如认知和功能评分)的变化更大。性别特异性分析中,大多数变化出现在 MCI 发病时的临床痴呆评定量表和功能活动问卷,其次是慢性疾病,然后是 NPI-Q 评分。

结论

网络分析显示出了在从 MCI 诊断到痴呆症进展的时间跨度内捕捉健康状况的重要纵向变化的巨大潜力。它可以作为一种有价值的分析方法,用于监测认知障碍评估中个体的健康状况。此外,我们的研究结果表明,特定健康状况对痴呆症进展的影响在性别方面存在显著差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a309/11488361/3a3de9aa54c8/12911_2024_2711_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验