Suppr超能文献

太大、太小还是刚刚好?密度泛函理论预测小化学体系电子密度空间范围的基准评估。

Too big, too small, or just right? A benchmark assessment of density functional theory for predicting the spatial extent of the electron density of small chemical systems.

作者信息

Hait Diptarka, Liang Yu Hsuan, Head-Gordon Martin

机构信息

Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA.

出版信息

J Chem Phys. 2021 Feb 21;154(7):074109. doi: 10.1063/5.0038694.

Abstract

Multipole moments are the first-order responses of the energy to spatial derivatives of the electric field strength. The quality of density functional theory prediction of molecular multipole moments thus characterizes errors in modeling the electron density itself, as well as the performance in describing molecules interacting with external electric fields. However, only the lowest non-zero moment is translationally invariant, making the higher-order moments origin-dependent. Therefore, instead of using the 3 × 3 quadrupole moment matrix, we utilize the translationally invariant 3 × 3 matrix of second cumulants (or spatial variances) of the electron density as the quantity of interest (denoted by K). The principal components of K are the square of the spatial extent of the electron density along each axis. A benchmark dataset of the principal components of K for 100 small molecules at the coupled cluster singles and doubles with perturbative triples at the complete basis set limit is developed, resulting in 213 independent K components. The performance of 47 popular and recent density functionals is assessed against this Var213 dataset. Several functionals, especially double hybrids, and also SCAN and SCAN0 predict reliable second cumulants, although some modern, empirically parameterized functionals yield more disappointing performance. The H, Li, and Be atoms, in particular, are challenging for nearly all methods, indicating that future functional development could benefit from the inclusion of their density information in training or testing protocols.

摘要

多极矩是能量对电场强度空间导数的一阶响应。因此,分子多极矩的密度泛函理论预测质量表征了电子密度建模中的误差,以及描述分子与外部电场相互作用时的性能。然而,只有最低阶非零矩是平移不变的,使得高阶矩依赖于原点。因此,我们不使用3×3四极矩矩阵,而是利用电子密度二阶累积量(或空间方差)的平移不变3×3矩阵作为感兴趣的量(用K表示)。K的主成分是电子密度沿每个轴的空间范围的平方。开发了一个包含100个小分子在完全基组极限下的耦合簇单双激发加上微扰三激发水平下K主成分的基准数据集,得到213个独立的K分量。针对这个Var213数据集评估了47种流行和最新的密度泛函的性能。几种泛函,特别是双杂化泛函,以及SCAN和SCAN0能预测可靠的二阶累积量,尽管一些现代的、经验参数化的泛函表现更令人失望。特别是H、Li和Be原子,几乎对所有方法都具有挑战性,这表明未来泛函的发展可能受益于在训练或测试协议中纳入它们的密度信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验