Suppr超能文献

密度泛函理论预测偶极矩的准确性如何?利用 200 个基准值新数据库的评估。

How Accurate Is Density Functional Theory at Predicting Dipole Moments? An Assessment Using a New Database of 200 Benchmark Values.

机构信息

Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California , Berkeley , California 94720 , United States.

Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.

出版信息

J Chem Theory Comput. 2018 Apr 10;14(4):1969-1981. doi: 10.1021/acs.jctc.7b01252. Epub 2018 Mar 28.

Abstract

Dipole moments are a simple, global measure of the accuracy of the electron density of a polar molecule. Dipole moments also affect the interactions of a molecule with other molecules as well as electric fields. To directly assess the accuracy of modern density functionals for calculating dipole moments, we have developed a database of 200 benchmark dipole moments, using coupled cluster theory through triple excitations, extrapolated to the complete basis set limit. This new database is used to assess the performance of 88 popular or recently developed density functionals. The results suggest that double hybrid functionals perform the best, yielding dipole moments within about 3.6-4.5% regularized RMS error versus the reference values-which is not very different from the 4% regularized RMS error produced by coupled cluster singles and doubles. Many hybrid functionals also perform quite well, generating regularized RMS errors in the 5-6% range. Some functionals, however, exhibit large outliers, and local functionals in general perform less well than hybrids or double hybrids.

摘要

偶极矩是衡量极性分子电子密度准确性的一种简单、全局的度量。偶极矩也会影响分子与其他分子以及电场的相互作用。为了直接评估现代密度泛函计算偶极矩的准确性,我们使用耦合簇理论通过三重激发,外推到完全基组极限,开发了一个包含 200 个基准偶极矩的数据库。这个新的数据库用于评估 88 种流行或最近开发的密度泛函的性能。结果表明,双杂化泛函表现最好,与参考值相比,偶极矩的正则化均方根误差在 3.6-4.5%以内-这与耦合簇单双的 4%正则化均方根误差相差不大。许多混合泛函也表现得相当好,正则化均方根误差在 5-6%范围内。然而,一些泛函表现出较大的离群值,而局部泛函通常不如混合泛函或双杂化泛函表现好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验