The MSF Foundation, Paris, France.
Université Paris-Saclay, CNRS, Univ Evry, Laboratoire de Mathématiques et Modélisation d'Evry, 91037, Evry-Courcouronnes, France.
Nat Commun. 2021 Feb 19;12(1):1173. doi: 10.1038/s41467-021-21187-3.
Antimicrobial resistance is a major global health threat and its development is promoted by antibiotic misuse. While disk diffusion antibiotic susceptibility testing (AST, also called antibiogram) is broadly used to test for antibiotic resistance in bacterial infections, it faces strong criticism because of inter-operator variability and the complexity of interpretative reading. Automatic reading systems address these issues, but are not always adapted or available to resource-limited settings. We present an artificial intelligence (AI)-based, offline smartphone application for antibiogram analysis. The application captures images with the phone's camera, and the user is guided throughout the analysis on the same device by a user-friendly graphical interface. An embedded expert system validates the coherence of the antibiogram data and provides interpreted results. The fully automatic measurement procedure of our application's reading system achieves an overall agreement of 90% on susceptibility categorization against a hospital-standard automatic system and 98% against manual measurement (gold standard), with reduced inter-operator variability. The application's performance showed that the automatic reading of antibiotic resistance testing is entirely feasible on a smartphone. Moreover our application is suited for resource-limited settings, and therefore has the potential to significantly increase patients' access to AST worldwide.
抗菌药物耐药性是一个主要的全球健康威胁,其发展是由于抗生素的滥用。虽然磁盘扩散抗生素药敏试验(AST,也称为药敏图)被广泛用于检测细菌感染中的抗生素耐药性,但由于操作人员之间的变异性和解释性阅读的复杂性,它面临着强烈的批评。自动阅读系统解决了这些问题,但并不总是适应或可用于资源有限的环境。我们提出了一种基于人工智能(AI)的离线智能手机应用程序,用于分析药敏图。该应用程序使用手机的摄像头拍摄图像,用户通过友好的图形界面在同一设备上全程获得分析指导。一个嵌入式专家系统验证了药敏数据的一致性,并提供了解释性结果。我们的应用程序的阅读系统的全自动测量程序在对医院标准自动系统的药敏分类方面达到了 90%的总体一致性,对人工测量(金标准)的一致性达到了 98%,同时减少了操作人员之间的变异性。该应用程序的性能表明,智能手机完全可以实现抗生素耐药性检测的自动读取。此外,我们的应用程序适用于资源有限的环境,因此有可能显著增加全球范围内患者对抗生素药敏试验的可及性。