Hasselt University, Institute for Materials Research, Applied and Analytical Chemistry, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
Int J Biol Macromol. 2021 May 1;178:71-93. doi: 10.1016/j.ijbiomac.2021.02.091. Epub 2021 Feb 18.
Nature provides concepts and materials with interesting functionalities to be implemented in innovative and sustainable materials. In this review, it is illustrated how the combination of biological macromolecules, i.e. polydopamine and polysaccharides (cellulose, chitin/chitosan, alginate), enables to create functional materials with controlled properties. The mussel-adhesive properties rely on the secretion of proteins having 3,4-dihydroxyphenylalanine amino acid with catechol groups. Fundamental understanding on the biological functionality and interaction mechanisms of dopamine in the mussel foot plaque is presented in parallel with the development of synthetic analogues through extraction or chemical polymer synthesis. Subsequently, modification of cellulose, chitin/chitosan or alginate and their nanoscale structures with polydopamine is discussed for various technical applications, including bio- and nanocomposites, films, filtration or medical membranes, adhesives, aerogels, or hydrogels. The presence of polydopamine stretches far beyond surface adhesive properties, as it can be used as an intermediate to provide additional performance of hydrophobicity, self-healing, antimicrobial, photocatalytic, sensoric, adsorption, biocompatibility, conductivity, coloring or mechanical properties. The dopamine-based 'green' chemistry can be extended towards generalized catechol chemistry for modification of polysaccharides with tannic acid, caffeic acid or laccase-mediated catechol functionalization. Therefore, the modification of polysaccharides with polydopamine or catechol analogues provides a general platform for sustainable material functionalization.
自然提供了具有有趣功能的概念和材料,可以将其应用于创新和可持续的材料中。在这篇综述中,我们说明了生物大分子(如多巴胺和多糖[纤维素、壳聚糖/壳多糖、藻酸盐])的组合如何使具有可控性能的功能性材料得以创建。贻贝的粘附特性依赖于具有儿茶酚基团的 3,4-二羟基苯丙氨酸氨基酸的蛋白质分泌。本文介绍了贻贝足垫中多巴胺的生物学功能和相互作用机制的基本理解,同时还介绍了通过提取或化学聚合合成合成类似物的发展情况。随后,讨论了用多巴胺修饰纤维素、壳聚糖/壳多糖或藻酸盐及其纳米结构,用于各种技术应用,包括生物和纳米复合材料、薄膜、过滤或医用膜、胶粘剂、气凝胶或水凝胶。聚多巴胺的存在远远超出了表面粘附性能,因为它可用作中间体,提供疏水性、自修复、抗菌、光催化、传感、吸附、生物相容性、导电性、着色或机械性能等附加性能。基于多巴胺的“绿色”化学可以扩展到通用儿茶酚化学,用于用单宁酸、咖啡酸或漆酶介导的儿茶酚官能化修饰多糖。因此,用聚多巴胺或儿茶酚类似物修饰多糖为可持续材料功能化提供了一个通用平台。