Aspri Andrea, Beretta Elena, Gandolfi Alberto, Wasmer Etienne
Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austria.
Department of Mathematics, NYU-Abu Dhabi, United Arab Emirates.
J Math Econ. 2021 Mar;93:102490. doi: 10.1016/j.jmateco.2021.102490. Epub 2021 Feb 14.
We extend the classic approach (SIR) to a SEAIRD model with policy controls. A social planner's objective reflects the trade-off between mortality reduction and GDP, featuring its perception of the value of statistical life (PVSL). We introduce realistic and drastic limitations to the control available to it. Within this setup, we explore the results of various control policies. We notably describe the joint dynamics of infection and economy in different contexts with unique or multiple confinement episodes. Compared to other approaches, our contributions are: (i) to restrict the class of functions accessible to the social planner, and in particular to impose that they remain constant over some fixed periods; (ii) to impose implementation frictions, e.g. a lag in their implementation; (iii) to prove the existence of optimal strategies within this set of possible controls; iv) to exhibit a sudden change in optimal policy as the statistical value of life is raised, from laissez-faire to a sizeable lockdown level, indicating a possible reason for conflicting policy proposals.
我们将经典方法(SIR)扩展为一个带有政策控制的SEAIRD模型。社会规划者的目标反映了死亡率降低与国内生产总值之间的权衡,其特征在于对统计生命价值(PVSL)的认知。我们对其可用的控制措施引入了现实且严格的限制。在此框架内,我们探索各种控制政策的结果。我们特别描述了在不同情境下,有单次或多次封锁事件时感染与经济的联合动态。与其他方法相比,我们的贡献在于:(i)限制社会规划者可采用的函数类别,尤其要求它们在某些固定时间段内保持不变;(ii)施加实施摩擦,例如实施过程中的滞后;(iii)证明在这组可能的控制措施中存在最优策略;(iv)展示随着生命统计价值的提高,最优政策会突然从自由放任转变为相当程度的封锁水平,这表明了政策提议相互冲突的一个可能原因。