Kawaguchi Ayano
Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Front Cell Dev Biol. 2021 Feb 5;8:623573. doi: 10.3389/fcell.2020.623573. eCollection 2020.
During neocortical development, many neuronally differentiating cells (neurons and intermediate progenitor cells) are generated at the apical/ventricular surface by the division of neural progenitor cells (apical radial glial cells, aRGs). Neurogenic cell delamination, in which these neuronally differentiating cells retract their apical processes and depart from the apical surface, is the first step of their migration. Since the microenvironment established by the apical endfeet is crucial for maintaining neuroepithelial (NE)/aRGs, proper timing of the detachment of the apical endfeet is critical for the quantitative control of neurogenesis in cerebral development. During delamination, the microtubule-actin-AJ (adherens junction) configuration at the apical endfeet shows dynamic changes, concurrent with the constriction of the AJ ring at the apical endfeet and downregulation of cadherin expression. This process is mediated by transcriptional suppression of AJ-related molecules and multiple cascades to regulate cell adhesion and cytoskeletal architecture in a posttranscriptional manner. Recent advances have added molecules to the latter category: the interphase centrosome protein AKNA affects microtubule dynamics to destabilize the microtubule-actin-AJ complex, and the microtubule-associated protein Lzts1 inhibits microtubule assembly and activates actomyosin systems at the apical endfeet of differentiating cells. Moreover, Lzts1 induces the oblique division of aRGs, and loss of Lzts1 reduces the generation of outer radial glia (oRGs, also called basal radial glia, bRGs), another type of neural progenitor cell in the subventricular zone. These findings suggest that neurogenic cell delamination, and in some cases oRG generation, could be caused by a spectrum of interlinked mechanisms.
在新皮质发育过程中,许多正在向神经元分化的细胞(神经元和中间祖细胞)由神经祖细胞(顶端放射状胶质细胞,aRGs)在顶端/室管膜表面分裂产生。神经源性细胞脱层,即这些正在向神经元分化的细胞缩回其顶端突起并离开顶端表面,是它们迁移的第一步。由于顶端终足建立的微环境对于维持神经上皮(NE)/aRGs至关重要,因此顶端终足脱离的适当时间对于大脑发育中神经发生的定量控制至关重要。在脱层过程中,顶端终足处的微管 - 肌动蛋白 - 黏附连接(AJ)结构呈现动态变化,同时顶端终足处的AJ环收缩以及钙黏蛋白表达下调。这个过程由AJ相关分子的转录抑制和多个级联反应介导,以转录后方式调节细胞黏附和细胞骨架结构。最近的进展又增加了一些属于后一类的分子:间期中心体蛋白AKNA影响微管动力学,使微管 - 肌动蛋白 - AJ复合体不稳定,微管相关蛋白Lzts1抑制微管组装并激活分化细胞顶端终足处的肌动球蛋白系统。此外,Lzts1诱导aRGs的斜向分裂,Lzts1的缺失会减少外侧放射状胶质细胞(oRGs,也称为基底放射状胶质细胞,bRGs)的产生,oRGs是脑室下区的另一种神经祖细胞。这些发现表明,神经源性细胞脱层以及在某些情况下oRG的产生可能是由一系列相互关联的机制引起的。