Suppr超能文献

一种无污染 PCR 终点检测的 CRISPR/Cas9 擦除策略。

A CRISPR/Cas9 eraser strategy for contamination-free PCR end-point detection.

机构信息

MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.

Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.

出版信息

Biotechnol Bioeng. 2021 May;118(5):2053-2066. doi: 10.1002/bit.27718. Epub 2021 Mar 1.

Abstract

Polymerase chain reaction (PCR), a central technology for molecular diagnostics, is highly sensitive but susceptible to the risk of false positives caused by aerosol contamination, especially when an end-point detection mode is applied. Here, we proposed a solution by designing a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 eraser strategy for eliminating potential contamination amplification. The CRISPR/Cas9 engineered eraser is firstly adopted into artpcr reverse-transcription PCR (RT-PCR) system to achieve contamination-free RNA detection. Subsequently, we extended this CRISPR/Cas9 eraser to the PCR system. We engineered conventional PCR primers to enable the amplified products to contain an implanted NGG (protospacer adjacent motif, PAM) site, which is used as a code for specific CRISPR/Cas9 recognition. Pre-incubation of Cas9/sgRNA with PCR mix leads to a selective cleavage of contamination amplicons, thus only the template DNA is amplified. The developed CRISPR/Cas9 eraser, adopted by both RT-PCR and PCR systems, showed high-fidelity detection of SARS-CoV-2 and African swine fever virus with a convenient strip test.

摘要

聚合酶链式反应(PCR)是分子诊断的核心技术,具有很高的灵敏度,但容易受到气溶胶污染引起假阳性的风险,特别是当应用终点检测模式时。在这里,我们通过设计一种簇状规律间隔短回文重复序列(CRISPR)/Cas9 擦除策略来解决这个问题,该策略用于消除潜在的污染扩增。首先将 CRISPR/Cas9 工程化的擦除器应用于 artpcr 逆转录 PCR(RT-PCR)系统,以实现无污染 RNA 检测。随后,我们将此 CRISPR/Cas9 擦除器扩展到 PCR 系统中。我们设计了常规 PCR 引物,使扩增产物包含一个植入的 NGG(间隔短回文重复序列,PAM)位点,该位点用作特定 CRISPR/Cas9 识别的代码。Cas9/sgRNA 与 PCR 混合物的预孵育导致污染扩增子的选择性切割,从而仅扩增模板 DNA。开发的 CRISPR/Cas9 擦除器,应用于 RT-PCR 和 PCR 系统,均显示出对 SARS-CoV-2 和非洲猪瘟病毒的高保真检测,具有便捷的条带测试。

相似文献

1
A CRISPR/Cas9 eraser strategy for contamination-free PCR end-point detection.
Biotechnol Bioeng. 2021 May;118(5):2053-2066. doi: 10.1002/bit.27718. Epub 2021 Mar 1.
2
Evaluation of CRISPR/Cas9 site-specific function and validation of sgRNA sequence by a Cas9/sgRNA-assisted reverse PCR technique.
Anal Bioanal Chem. 2021 Apr;413(9):2447-2456. doi: 10.1007/s00216-021-03173-2. Epub 2021 Mar 4.
3
A One-Pot CRISPR/Cas9-Typing PCR for DNA Detection and Genotyping.
J Mol Diagn. 2021 Jan;23(1):46-60. doi: 10.1016/j.jmoldx.2020.10.004. Epub 2020 Oct 27.
4
HIV-1 Employs Multiple Mechanisms To Resist Cas9/Single Guide RNA Targeting the Viral Primer Binding Site.
J Virol. 2018 Sep 26;92(20). doi: 10.1128/JVI.01135-18. Print 2018 Oct 15.
5
A one-pot CRISPR/Cas13a-based contamination-free biosensor for low-cost and rapid nucleic acid diagnostics.
Biosens Bioelectron. 2022 Apr 15;202:113994. doi: 10.1016/j.bios.2022.113994. Epub 2022 Jan 13.
8
Detection of target DNA with a novel Cas9/sgRNAs-associated reverse PCR (CARP) technique.
Anal Bioanal Chem. 2018 May;410(12):2889-2900. doi: 10.1007/s00216-018-0873-5. Epub 2018 Mar 15.

引用本文的文献

2
CRISPR/Cas system and its application in the diagnosis of animal infectious diseases.
FASEB J. 2024 Dec 13;38(24):e70252. doi: 10.1096/fj.202401569R.
3
CRISPR-Cas9-mediated host signal reduction for 18S metabarcoding of host-associated eukaryotes.
Mol Ecol Resour. 2024 Aug;24(6):e13980. doi: 10.1111/1755-0998.13980. Epub 2024 May 28.
4
Progress and Perspective of CRISPR-Cas9 Technology in Translational Medicine.
Adv Sci (Weinh). 2023 Sep;10(25):e2300195. doi: 10.1002/advs.202300195. Epub 2023 Jun 25.
6
Paper microfluidics with deep learning for portable intelligent nucleic acid amplification tests.
Talanta. 2023 Jun 1;258:124470. doi: 10.1016/j.talanta.2023.124470. Epub 2023 Mar 20.
8
Non-nucleic acid extraction and ultra-sensitive detection of African swine fever virus via CRISPR/Cas12a.
Appl Microbiol Biotechnol. 2022 Jun;106(12):4695-4704. doi: 10.1007/s00253-022-11999-8. Epub 2022 Jun 18.
9
Improving the specificity of nucleic acid detection with endonuclease-actuated degradation.
Commun Biol. 2022 Mar 31;5(1):290. doi: 10.1038/s42003-022-03242-x.
10
Design and storage stability of reference materials for microfluidic quantitative PCR-based equine gene doping tests.
J Equine Sci. 2021 Dec;32(4):125-134. doi: 10.1294/jes.32.125. Epub 2021 Dec 28.

本文引用的文献

1
Three-dimensional digital PCR through light-sheet imaging of optically cleared emulsion.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25628-25633. doi: 10.1073/pnas.2002448117. Epub 2020 Sep 30.
2
Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA.
Nat Biomed Eng. 2020 Dec;4(12):1140-1149. doi: 10.1038/s41551-020-00603-x. Epub 2020 Aug 26.
3
Fighting COVID-19: Integrated Micro- and Nanosystems for Viral Infection Diagnostics.
Matter. 2020 Sep 2;3(3):628-651. doi: 10.1016/j.matt.2020.06.015. Epub 2020 Jul 9.
4
Wiping the Slate Clean-Assessing Clinical Laboratory Contamination Risk.
Clin Chem. 2020 Sep 1;66(9):1128-1130. doi: 10.1093/clinchem/hvaa161.
5
Clinical and Laboratory Diagnosis of SARS-CoV-2, the Virus Causing COVID-19.
ACS Infect Dis. 2020 Sep 11;6(9):2319-2336. doi: 10.1021/acsinfecdis.0c00274. Epub 2020 Aug 20.
6
Molecular Diagnosis of COVID-19: Challenges and Research Needs.
Anal Chem. 2020 Aug 4;92(15):10196-10209. doi: 10.1021/acs.analchem.0c02060. Epub 2020 Jul 9.
7
Interpreting Diagnostic Tests for SARS-CoV-2.
JAMA. 2020 Jun 9;323(22):2249-2251. doi: 10.1001/jama.2020.8259.
9
The Architecture of SARS-CoV-2 Transcriptome.
Cell. 2020 May 14;181(4):914-921.e10. doi: 10.1016/j.cell.2020.04.011. Epub 2020 Apr 23.
10
CRISPR-Cas12-based detection of SARS-CoV-2.
Nat Biotechnol. 2020 Jul;38(7):870-874. doi: 10.1038/s41587-020-0513-4. Epub 2020 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验