基于深度学习的纸基微流控芯片用于便携式智能核酸扩增检测。
Paper microfluidics with deep learning for portable intelligent nucleic acid amplification tests.
机构信息
School of Mechanical Engineering and Automation, Fuzhou University, 350108, China; Fujian Provincial Collaborative Innovation Centre of High-End Equipment Manufacturing, 350108, China.
School of Mechanical Engineering and Automation, Fuzhou University, 350108, China; Fujian Provincial Collaborative Innovation Centre of High-End Equipment Manufacturing, 350108, China.
出版信息
Talanta. 2023 Jun 1;258:124470. doi: 10.1016/j.talanta.2023.124470. Epub 2023 Mar 20.
During global outbreaks such as COVID-19, regular nucleic acid amplification tests (NAATs) have posed unprecedented burden on hospital resources. Data of traditional NAATs are manually analyzed post assay. Integration of artificial intelligence (AI) with on-chip assays give rise to novel analytical platforms via data-driven models. Here, we combined paper microfluidics, portable optoelectronic system with deep learning for SARS-CoV-2 detection. The system was quite streamlined with low power dissipation. Pixel by pixel signals reflecting amplification of synthesized SARS-CoV-2 templates (containing ORF1ab, N and E genes) can be real-time processed. Then, the data were synchronously fed to the neural networks for early prediction analysis. Instead of the quantification cycle (C) based analytics, reaction dynamics hidden at the early stage of amplification curve were utilized by neural networks for predicting subsequent data. Qualitative and quantitative analysis of the 40-cycle NAATs can be achieved at the end of 22nd cycle, reducing time cost by 45%. In particular, the attention mechanism based deep learning model trained by microfluidics-generated data can be seamlessly adapted to multiple clinical datasets including readouts of SARS-CoV-2 detection. Accuracy, sensitivity and specificity of the prediction can reach up to 98.1%, 97.6% and 98.6%, respectively. The approach can be compatible with the most advanced sensing technologies and AI algorithms to inspire ample innovations in fields of fundamental research and clinical settings.
在 COVID-19 等全球疫情爆发期间,常规核酸扩增检测 (NAAT) 给医院资源带来了前所未有的负担。传统 NAAT 的数据是在检测后进行人工分析的。人工智能 (AI) 与片上检测的结合通过数据驱动模型为新型分析平台提供了可能。在这里,我们将纸微流控、便携式光电系统与深度学习相结合,用于 SARS-CoV-2 的检测。该系统非常精简,功耗低。反映合成 SARS-CoV-2 模板(包含 ORF1ab、N 和 E 基因)扩增的逐像素信号可以实时处理。然后,数据被同步输入神经网络进行早期预测分析。神经网络利用扩增曲线早期隐藏的反应动力学而不是基于定量循环 (C) 的分析来预测后续数据。40 个循环的 NAATs 的定性和定量分析可以在第 22 个循环结束时完成,从而将时间成本降低 45%。特别是,基于微流控生成的数据训练的注意力机制深度学习模型可以无缝适应多个临床数据集,包括 SARS-CoV-2 检测的读数。预测的准确性、灵敏度和特异性分别高达 98.1%、97.6%和 98.6%。该方法可以与最先进的传感技术和人工智能算法兼容,为基础研究和临床领域的创新提供灵感。