Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Highly Pathogenic Viruses (ZBS 1), Berlin, Germany.
Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany.
Proteomics. 2021 Apr;21(7-8):e2000226. doi: 10.1002/pmic.202000226. Epub 2021 Mar 30.
A major part of the analysis of parallel reaction monitoring (PRM) data is the comparison of observed fragment ion intensities to a library spectrum. Classically, these libraries are generated by data-dependent acquisition (DDA). Here, we test Prosit, a published deep neural network algorithm, for its applicability in predicting spectral libraries for PRM. For this purpose, we targeted 1529 precursors derived from synthetic viral peptides and analyzed the data with Prosit and DDA-derived libraries. Viral peptides were chosen as an example, because virology is an area where in silico library generation could significantly improve PRM assay design. With both libraries a total of 1174 precursors were identified. Notably, compared to the DDA-derived library, we could identify 101 more precursors by using the Prosit-derived library. Additionally, we show that Prosit can be applied to predict tandem mass spectra of synthetic viral peptides with different collision energies. Finally, we used a spectral library predicted by Prosit and a DDA library to identify SARS-CoV-2 peptides from a simulated oropharyngeal swab demonstrating that both libraries are suited for peptide identification by PRM. Summarized, Prosit-derived viral spectral libraries predicted in silico can be used for PRM data analysis, making DDA analysis for library generation partially redundant in the future.
平行反应监测 (PRM) 数据分析的一个主要部分是将观察到的碎片离子强度与库谱进行比较。传统上,这些库是通过数据依赖采集 (DDA) 生成的。在这里,我们测试了 Prosit,这是一种已发布的深度神经网络算法,用于预测 PRM 的光谱库。为此,我们针对源自合成病毒肽的 1529 个前体进行了靶向分析,并使用 Prosit 和 DDA 衍生的库对数据进行了分析。选择病毒肽作为示例,是因为病毒学是一个可以通过计算生成库来显著改进 PRM 测定设计的领域。使用这两个库总共鉴定到 1174 个前体。值得注意的是,与 DDA 衍生的库相比,我们使用 Prosit 衍生的库可以鉴定到 101 个更多的前体。此外,我们还表明,Prosit 可以应用于预测具有不同碰撞能的合成病毒肽的串联质谱。最后,我们使用 Prosit 预测的光谱库和 DDA 库来鉴定来自模拟咽拭子的 SARS-CoV-2 肽,证明这两个库都适合 PRM 的肽鉴定。总之,Prosit 预测的病毒光谱库可以用于 PRM 数据分析,从而使未来的 DDA 分析在生成库方面部分冗余。