Suppr超能文献

蛋白质组学在 COVID-19 战场上:第一学期检查。

Proteomics in the COVID-19 Battlefield: First Semester Check-Up.

机构信息

Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Ceze, F-30200, France.

出版信息

Proteomics. 2021 Jan;21(1):e2000198. doi: 10.1002/pmic.202000198. Epub 2020 Dec 2.

Abstract

Proteomics offers a wide collection of methodologies to study biological systems at the finest granularity. Faced with COVID-19, the most worrying pandemic in a century, proteomics researchers have made significant progress in understanding how the causative virus hijacks the host's cellular machinery and multiplies exponentially, how the disease can be diagnosed, and how it develops, as well as its severity predicted. Numerous cellular targets of potential interest for the development of new antiviral drugs have been documented. Here, the most striking results obtained in the proteomics field over this first semester of the pandemic are presented. The molecular machinery of SARS-CoV-2 is much more complex than initially believed, as many post-translational modifications can occur, leading to a myriad of proteoforms and a broad heterogeneity of viral particles. The interplay of protein-protein interactions, protein abundances, and post-translational modifications has yet to be fully documented to provide a full picture of this intriguing but lethal biological threat. Proteomics has the potential to provide rapid detection of the SARS-CoV-2 virus by mass spectrometry proteotyping, and to further increase the knowledge of severe respiratory syndrome COVID-19 and its long-term health consequences.

摘要

蛋白质组学提供了广泛的方法来研究生物系统的最细微颗粒度。面对 COVID-19 这一世纪以来最令人担忧的大流行,蛋白质组学研究人员在理解致病病毒如何劫持宿主细胞机制并呈指数级繁殖、如何诊断疾病以及疾病如何发展及其严重程度预测方面取得了重大进展。已经记录了许多有希望用于开发新抗病毒药物的细胞靶标。在这里,介绍了在大流行的第一个学期中在蛋白质组学领域中获得的最引人注目的结果。SARS-CoV-2 的分子机制比最初认为的要复杂得多,因为可以发生许多翻译后修饰,从而导致大量的蛋白形式和广泛的病毒粒子异质性。蛋白质-蛋白质相互作用、蛋白质丰度和翻译后修饰的相互作用尚未被充分记录下来,以提供对这一引人入胜但致命的生物威胁的全面了解。蛋白质组学有可能通过质谱蛋白质组学快速检测 SARS-CoV-2 病毒,并进一步增加对严重呼吸道综合征 COVID-19 及其长期健康后果的了解。

相似文献

1
Proteomics in the COVID-19 Battlefield: First Semester Check-Up.
Proteomics. 2021 Jan;21(1):e2000198. doi: 10.1002/pmic.202000198. Epub 2020 Dec 2.
2
Proteomic Approaches to Study SARS-CoV-2 Biology and COVID-19 Pathology.
J Proteome Res. 2021 Feb 5;20(2):1133-1152. doi: 10.1021/acs.jproteome.0c00764. Epub 2021 Jan 19.
3
Proteomics-Based Insights Into the SARS-CoV-2-Mediated COVID-19 Pandemic: A Review of the First Year of Research.
Mol Cell Proteomics. 2021;20:100103. doi: 10.1016/j.mcpro.2021.100103. Epub 2021 Jun 4.
4
Open Science Resources for the Mass Spectrometry-Based Analysis of SARS-CoV-2.
J Proteome Res. 2021 Mar 5;20(3):1464-1475. doi: 10.1021/acs.jproteome.0c00929. Epub 2021 Feb 19.
5
COVIDomics: The Proteomic and Metabolomic Signatures of COVID-19.
Int J Mol Sci. 2022 Feb 22;23(5):2414. doi: 10.3390/ijms23052414.
7
Role of Multiomics Data to Understand Host-Pathogen Interactions in COVID-19 Pathogenesis.
J Proteome Res. 2021 Feb 5;20(2):1107-1132. doi: 10.1021/acs.jproteome.0c00771. Epub 2021 Jan 11.
10
Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV.
Nature. 2021 Jun;594(7862):246-252. doi: 10.1038/s41586-021-03493-4. Epub 2021 Apr 12.

引用本文的文献

1
Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples.
Mass Spectrom Rev. 2024 Jan-Feb;43(1):193-229. doi: 10.1002/mas.21813. Epub 2022 Sep 29.
2
Taxonomical and functional changes in COVID-19 faecal microbiome could be related to SARS-CoV-2 faecal load.
Environ Microbiol. 2022 Sep;24(9):4299-4316. doi: 10.1111/1462-2920.16028. Epub 2022 May 9.
3
Looking at COVID-19 from a Systems Biology Perspective.
Biomolecules. 2022 Jan 22;12(2):188. doi: 10.3390/biom12020188.
5
Discovery Proteomics for COVID-19: Where We Are Now.
J Proteome Res. 2021 Oct 1;20(10):4627-4639. doi: 10.1021/acs.jproteome.1c00475. Epub 2021 Sep 22.
6
SOD1 is a Possible Predictor of COVID-19 Progression as Revealed by Plasma Proteomics.
ACS Omega. 2021 Jun 24;6(26):16826-16836. doi: 10.1021/acsomega.1c01375. eCollection 2021 Jul 6.
7
Applied Proteomics in 'One Health'.
Proteomes. 2021 Jun 30;9(3):31. doi: 10.3390/proteomes9030031.
8
Heterogeneity of SARS-CoV-2 virus produced in cell culture revealed by shotgun proteomics and supported by genome sequencing.
Anal Bioanal Chem. 2021 Dec;413(29):7265-7275. doi: 10.1007/s00216-021-03401-9. Epub 2021 May 20.
9
Can proteomics-based approaches further help COVID-19 prevention and therapy?
Expert Rev Proteomics. 2021 Apr;18(4):241-245. doi: 10.1080/14789450.2021.1924684. Epub 2021 May 16.
10
Can molecular mimicry explain the cytokine storm of SARS-CoV-2?: An in silico approach.
J Med Virol. 2021 Sep;93(9):5350-5357. doi: 10.1002/jmv.27040. Epub 2021 Jun 11.

本文引用的文献

1
Pathogen proteotyping: A rapidly developing application of mass spectrometry to address clinical concerns.
Clin Mass Spectrom. 2019 Apr 29;14 Pt A:9-17. doi: 10.1016/j.clinms.2019.04.004. eCollection 2019 Sep.
2
Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein.
ACS Cent Sci. 2020 Oct 28;6(10):1722-1734. doi: 10.1021/acscentsci.0c01056. Epub 2020 Sep 23.
3
A rapid and sensitive method to detect SARS-CoV-2 virus using targeted-mass spectrometry.
J Proteins Proteom. 2020;11(3):159-165. doi: 10.1007/s42485-020-00044-9. Epub 2020 Aug 31.
4
Large-Scale Multi-omic Analysis of COVID-19 Severity.
Cell Syst. 2021 Jan 20;12(1):23-40.e7. doi: 10.1016/j.cels.2020.10.003. Epub 2020 Oct 8.
5
Utility of Proteomics in Emerging and Re-Emerging Infectious Diseases Caused by RNA Viruses.
J Proteome Res. 2020 Nov 6;19(11):4259-4274. doi: 10.1021/acs.jproteome.0c00380. Epub 2020 Oct 23.
6
Perspective on Proteomics for Virus Detection in Clinical Samples.
J Proteome Res. 2020 Nov 6;19(11):4380-4388. doi: 10.1021/acs.jproteome.0c00674. Epub 2020 Oct 22.
7
Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity.
Science. 2020 Nov 13;370(6518):856-860. doi: 10.1126/science.abd2985. Epub 2020 Oct 20.
8
Transcriptional and proteomic insights into the host response in fatal COVID-19 cases.
Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28336-28343. doi: 10.1073/pnas.2018030117. Epub 2020 Oct 20.
9
Site-specific N-glycosylation Characterization of Recombinant SARS-CoV-2 Spike Proteins.
Mol Cell Proteomics. 2021;20:100058. doi: 10.1074/mcp.RA120.002295. Epub 2021 Feb 11.
10
Proteomics Insights Into the Molecular Basis of SARS-CoV-2 Infection: What We Can Learn From the Human Olfactory Axis.
Front Microbiol. 2020 Sep 22;11:2101. doi: 10.3389/fmicb.2020.02101. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验