Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, U.K.
Biochem Soc Trans. 2021 Feb 26;49(1):379-391. doi: 10.1042/BST20200697.
The material properties of cellulose are heavily influenced by the organisation of β-1,4-glucan chains into a microfibril. It is likely that the structure of this microfibril is determined by the spatial arrangement of catalytic cellulose synthase (CESA) proteins within the cellulose synthase complex (CSC). In land plants, CESA proteins form a large complex composed of a hexamer of trimeric lobes termed the rosette. Each rosette synthesises a single microfibril likely composed of 18 glucan chains. In this review, the biochemical events leading to plant CESA protein assembly into the rosette are explored. The protein interfaces responsible for CESA trimerization are formed by regions that define rosette-forming CESA proteins. As a consequence, these regions are absent from the ancestral bacterial cellulose synthases (BcsAs) that do not form rosettes. CSC assembly occurs within the context of the endomembrane system, however the site of CESA assembly into trimers and rosettes is not determined. Both the N-Terminal Domain and Class Specific Region of CESA proteins are intrinsically disordered and contain all of the identified phosphorylation sites, making both regions candidates as sites for protein-protein interactions and inter-lobe interface formation. We propose a sequential assembly model, whereby CESA proteins form stable trimers shortly after native folding, followed by sequential recruitment of lobes into a rosette, possibly assisted by Golgi-localised STELLO proteins. A comprehensive understanding of CESA assembly into the CSC will enable directed engineering of CESA protein spatial arrangements, allowing changes in cellulose crystal packing that alter its material properties.
纤维素的材料性质受到β-1,4-葡聚糖链组织成微纤维的影响。微纤维的结构很可能由纤维素合酶复合物(CSC)内催化纤维素合酶(CESA)蛋白的空间排列决定。在陆地植物中,CESA 蛋白形成一个由六聚体三聚体叶组成的大型复合物,称为玫瑰花结。每个玫瑰花结合成一个可能由 18 个葡聚糖链组成的单个微纤维。在这篇综述中,探讨了导致植物 CESA 蛋白组装成玫瑰花结的生化事件。负责 CESA 三聚体化的蛋白界面由定义玫瑰花结形成 CESA 蛋白的区域形成。因此,这些区域不存在于不形成玫瑰花结的原始细菌纤维素合酶(BcsAs)中。CSC 的组装发生在内质网系统的背景下,但 CESA 三聚体和玫瑰花结组装的部位尚未确定。CESA 蛋白的 N 端结构域和类特异性区域均为固有无序区,包含所有已鉴定的磷酸化位点,这两个区域均可能作为蛋白-蛋白相互作用和叶间界面形成的候选部位。我们提出了一个顺序组装模型,即 CESA 蛋白在天然折叠后不久形成稳定的三聚体,然后顺序招募叶形成玫瑰花结,可能由高尔基定位的 STELLO 蛋白协助。对 CESA 组装成 CSC 的全面了解将使 CESA 蛋白空间排列的定向工程成为可能,从而改变纤维素晶体堆积,改变其材料性质。