Ho Ruoya, Purushotham Pallinti, Wilson Louis F L, Wan Yueping, Zimmer Jochen
Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903.
Howard Hughes Medical Institute.
bioRxiv. 2025 Jan 14:2024.02.13.580128. doi: 10.1101/2024.02.13.580128.
Plant cell walls contain a meshwork of cellulose fibers embedded into a matrix of other carbohydrate and non-carbohydrate-based biopolymers. This composite material exhibits extraordinary properties, from stretchable and pliable cell boundaries to solid protective shells. Cellulose, a linear glucose polymer, is synthesized and secreted across the plasma membrane by cellulose synthase (CesA), of which plants express multiple isoforms. Different subsets of CesA isoforms are necessary for primary and secondary cell wall biogenesis. Here, we structurally and functionally characterize the (soybean) primary cell wall CesAs CesA1, CesA3, and CesA6. The CesA isoforms exhibit robust catalytic activity. Cryo-electron microscopy analyses reveal their assembly into homotrimeric complexes in which each CesA protomer forms a cellulose-conducting transmembrane channel with a large lateral opening. Biochemical and co-purification analyses demonstrate that different CesA isoforms interact , leading to synergistic cellulose biosynthesis. Interactions between CesA trimers are only observed between different CesA isoforms and require the class-specific region (CSR). The CSR forms a hook-shaped extension of CesA's catalytic domain at the cytosolic water-lipid interface. Negative stain and cryo-electron microscopy analyses of mixtures of different CesA isoform trimers reveal their side-by-side arrangement into loose clusters. Our data suggest a model by which CesA homotrimers of different isoforms assemble into cellulose synthase complexes to synthesize and secrete multiple cellulose chains for microfibril formation. Inter-trimer interactions are mediated by fuzzy interactions between their CSR extension.
植物细胞壁含有嵌入其他碳水化合物和非碳水化合物基生物聚合物基质中的纤维素纤维网络。这种复合材料具有非凡的特性,从可拉伸且柔韧的细胞边界到坚固的保护壳。纤维素是一种线性葡萄糖聚合物,由纤维素合酶(CesA)在质膜上合成并分泌,植物中表达多种CesA同工型。不同的CesA同工型亚组对于初生和次生细胞壁生物合成是必需的。在这里,我们对(大豆)初生细胞壁CesA CesA1、CesA3和CesA6进行了结构和功能表征。这些CesA同工型表现出强大的催化活性。冷冻电子显微镜分析揭示了它们组装成同三聚体复合物,其中每个CesA原聚体形成一个具有大侧向开口的纤维素传导跨膜通道。生化和共纯化分析表明不同的CesA同工型相互作用,导致协同的纤维素生物合成。仅在不同的CesA同工型之间观察到CesA三聚体之间的相互作用,并且需要类特异性区域(CSR)。CSR在胞质水 - 脂界面处形成CesA催化结构域的钩状延伸。对不同CesA同工型三聚体混合物的负染和冷冻电子显微镜分析揭示了它们并排排列成松散的簇。我们的数据提出了一个模型,通过该模型不同同工型的CesA同三聚体组装成纤维素合酶复合物,以合成和分泌多条纤维素链用于微纤丝形成。三聚体间的相互作用由它们的CSR延伸之间的模糊相互作用介导。