Suppr超能文献

在CO电还原过程中潜在控制的铜纳米立方体和石墨烯包覆的铜纳米立方体的出现

Emergence of Potential-Controlled Cu-Nanocuboids and Graphene-Covered Cu-Nanocuboids under CO Electroreduction.

作者信息

Phan Thanh Hai, Banjac Karla, Cometto Fernando P, Dattila Federico, García-Muelas Rodrigo, Raaijman Stefan J, Ye Chunmiao, Koper Marc T M, López Núria, Lingenfelder Magalí

机构信息

Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology and IPHYS, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain.

出版信息

Nano Lett. 2021 Mar 10;21(5):2059-2065. doi: 10.1021/acs.nanolett.0c04703. Epub 2021 Feb 22.

Abstract

The electroreduction of CO (CORR) is a promising strategy toward sustainable fuels. Cu is the only Earth-abundant and pure metal capable of catalyzing CO-to-hydrocarbons conversion with significant Faradaic efficiencies; yet, its dynamic structure under CORR conditions remains unknown. Here, we track the Cu structure by electrochemical scanning tunneling microscopy and Raman spectroscopy. Surprisingly, polycrystalline Cu surfaces reconstruct forming Cu nanocuboids whose size can be controlled by the polarization potential and the time employed in their synthesis, without the assistance of organic surfactants and/or halide anions. If the Cu surface is covered by a graphene monolayer, smaller features with enhanced catalytic activity for CORR can be prepared. The graphene-protecting layer softens the 3D morphological changes that Cu-based catalysts suffer when exposed to aggressive electrochemical environments and allows us to track the kinetic roughening process. This novel strategy is promising for improving Cu long-term stability, and consequently, it could be used as a platform to ultimately control product selectivity.

摘要

将一氧化碳电还原(CORR)是一种生产可持续燃料的很有前景的策略。铜是唯一一种储量丰富且能以显著法拉第效率催化一氧化碳转化为碳氢化合物的纯金属;然而,在CORR条件下其动态结构仍不为人知。在此,我们通过电化学扫描隧道显微镜和拉曼光谱追踪铜的结构。令人惊讶的是,多晶铜表面重构形成了铜纳米立方体,其尺寸可通过极化电位及其合成所用时间来控制,无需有机表面活性剂和/或卤化物阴离子的辅助。如果铜表面覆盖有单层石墨烯,就能制备出对CORR具有增强催化活性的更小特征结构。石墨烯保护层减轻了铜基催化剂在暴露于苛刻电化学环境时所遭受的三维形态变化,并使我们能够追踪动力学粗糙化过程。这种新策略有望提高铜的长期稳定性,因此,它可作为一个最终控制产物选择性的平台。

相似文献

1
Emergence of Potential-Controlled Cu-Nanocuboids and Graphene-Covered Cu-Nanocuboids under CO Electroreduction.
Nano Lett. 2021 Mar 10;21(5):2059-2065. doi: 10.1021/acs.nanolett.0c04703. Epub 2021 Feb 22.
2
Dynamic Changes in the Structure, Chemical State and Catalytic Selectivity of Cu Nanocubes during CO Electroreduction: Size and Support Effects.
Angew Chem Int Ed Engl. 2018 May 22;57(21):6192-6197. doi: 10.1002/anie.201802083. Epub 2018 Apr 26.
3
Structure- and Electrolyte-Sensitivity in CO Electroreduction.
Acc Chem Res. 2018 Nov 20;51(11):2906-2917. doi: 10.1021/acs.accounts.8b00360. Epub 2018 Oct 18.
4
Organic Thin Films Enable Retaining the Oxidation State of Copper Catalysts during CO Electroreduction.
ACS Appl Mater Interfaces. 2024 Feb 7;16(5):6562-6568. doi: 10.1021/acsami.3c14554. Epub 2024 Jan 25.
5
Dynamic Evolution of Copper Nanowires during CO Reduction Probed by Electrochemical 4D-STEM and X-ray Spectroscopy.
J Am Chem Soc. 2024 Aug 21;146(33):23398-23405. doi: 10.1021/jacs.4c06480. Epub 2024 Aug 12.
6
The study of surface species and structures of oxide-derived copper catalysts for electrochemical CO reduction.
Chem Sci. 2021 Mar 16;12(16):5938-5943. doi: 10.1039/d1sc00042j. eCollection 2021 Apr 28.
8
Structural evolution and strain generation of derived-Cu catalysts during CO electroreduction.
Nat Commun. 2022 Aug 18;13(1):4857. doi: 10.1038/s41467-022-32601-9.
9
Mössbauer Spectroscopic Tracking the Metastable State of Atomically Dispersed Tin in Copper Oxide for Selective CO Electroreduction.
J Am Chem Soc. 2023 Sep 20;145(37):20683-20691. doi: 10.1021/jacs.3c06738. Epub 2023 Sep 8.
10
Oxidation State and Surface Reconstruction of Cu under CO Reduction Conditions from X-ray Characterization.
J Am Chem Soc. 2021 Jan 20;143(2):588-592. doi: 10.1021/jacs.0c10017. Epub 2020 Dec 31.

引用本文的文献

1
Progress in Cu-Based Catalyst Design for Sustained Electrocatalytic CO to C Conversion.
Adv Sci (Weinh). 2025 Apr;12(13):e2416597. doi: 10.1002/advs.202416597. Epub 2025 Feb 27.
2
Alkali cation-induced cathodic corrosion in Cu electrocatalysts.
Nat Commun. 2024 Jun 13;15(1):5080. doi: 10.1038/s41467-024-49492-7.
3
Recent advances in dynamic reconstruction of electrocatalysts for carbon dioxide reduction.
iScience. 2024 May 15;27(6):110005. doi: 10.1016/j.isci.2024.110005. eCollection 2024 Jun 21.
4
In Situ Probing of CO Reduction on Cu-Phthalocyanine-Derived Cu O Complex.
Adv Sci (Weinh). 2024 Jan;11(4):e2304735. doi: 10.1002/advs.202304735. Epub 2023 Nov 29.
5
Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis.
Chem Rev. 2023 Apr 26;123(8):4972-5019. doi: 10.1021/acs.chemrev.2c00766. Epub 2023 Mar 27.
6
Energetics and Kinetics of Hydrogen Electrosorption on a Graphene-Covered Pt(111) Electrode.
JACS Au. 2023 Jan 18;3(2):526-535. doi: 10.1021/jacsau.2c00648. eCollection 2023 Feb 27.
8
The presence and role of the intermediary CO reservoir in heterogeneous electroreduction of CO.
Proc Natl Acad Sci U S A. 2022 May 3;119(18):e2201922119. doi: 10.1073/pnas.2201922119. Epub 2022 Apr 29.
9
Morphological Stability of Copper Surfaces under Reducing Conditions.
ACS Appl Mater Interfaces. 2021 Oct 20;13(41):48730-48744. doi: 10.1021/acsami.1c13989. Epub 2021 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验