Suppr超能文献

基于脑电图的瑜伽和冥想过程中人脑活动的机器学习解读:系统综述。

EEG based interpretation of human brain activity during yoga and meditation using machine learning: A systematic review.

机构信息

GRIET, Hyderabad, India.

GRIET, Hyderabad, India.

出版信息

Complement Ther Clin Pract. 2021 May;43:101329. doi: 10.1016/j.ctcp.2021.101329. Epub 2021 Feb 14.

Abstract

OBJECTIVES

The present investigation is to study the impact of yoga and meditation on Brain waves concerning physical and mental health. There are mainly three stages (steps) in the brain wave classification:(i) preprocessing, ii) feature extraction, and iii) classification. This work provides a review of interpretation methods of Brain signals (Electroencephalogram (EEG)) EEG during yoga and meditation. Past research has revealed significant mental and physical advantages with yoga and meditation.

METHODS

The research topic reviewed focused on the machine learning strategies applied for the interpretation of brain waves. In addressing the research questions highlighted earlier in the general introduction, we conducted a systematic search of articles from targeted scientific and journal online databases that included PubMed, Web of Science, IEEE Xplore Digital Library (IEEE), and Arxiv databases based on their relevance to the research questions and domain topic. The survey topic is relatively nascent, and therefore, the scope of the search period was limited to the 20-year timeline that was deemed representative of the research topic under investigation. The literature search was based on the keywords "EEG", "yoga*" and "meditation*". The key phrases were concatenated using Boolean expressions and applied to search through the selected online databases yielding a total of 120 articles. The online databases were selected based on the relevancy of content with the research title, research questions, and the domain application. The literature review search, process, and classification were carefully conducted guided by two defined measures; 1.) Inclusion criteria; and 2.) Exclusion criteria. These measures define the criteria for searching and extracting relevant articles relating to the research title and domain of interest.

RESULTS

Our literature search and review indicate a broad spectrum of neural mechanics under a variety of meditation styles have been investigated. A detailed analysis of various mental states using Zen, CHAN, mindfulness, TM, Rajayoga, Kundalini, Yoga, and other meditation styles have been described by means of EEG bands. Classification of mental states using KNN, SVM, Random forest, Fuzzy logic, neural networks, Convolutional Neural Networks has been described. Superior research is still required to classify the EEG signatures corresponding to different mental states.

CONCLUSIONS

Yoga practice may be an effective adjunctive treatment for a clinical and aging population. Advanced research can examine the effects of specific branches of yoga on a designated clinical grouping. Yoga and meditation increased overall healthy brain activity.

摘要

目的

本研究旨在探讨瑜伽和冥想对身心健康的脑波影响。脑波分类主要有三个阶段(步骤):(i)预处理,(ii)特征提取,和(iii)分类。本工作提供了对瑜伽和冥想期间脑信号(脑电图(EEG))解释方法的综述。过去的研究已经揭示了瑜伽和冥想带来的显著的身心益处。

方法

本研究重点回顾了应用于脑波解释的机器学习策略。为了解决引言中强调的研究问题,我们对来自目标科学和期刊在线数据库的文章进行了系统搜索,这些数据库包括 PubMed、Web of Science、IEEE Xplore Digital Library(IEEE)和 Arxiv 数据库,这些数据库基于与研究问题和领域主题的相关性。该调查主题相对较新,因此,搜索时间段的范围限制在 20 年,这被认为是研究主题的代表性时间段。文献搜索基于关键字“EEG”、“yoga*”和“meditation*”。使用布尔表达式将关键词连接起来,并应用于选定的在线数据库进行搜索,共得到 120 篇文章。在线数据库的选择基于与研究标题、研究问题和域应用相关的内容相关性。文献综述搜索、过程和分类由两个定义的措施仔细指导;1.)纳入标准;和 2.)排除标准。这些措施定义了与研究标题和感兴趣的领域相关的搜索和提取相关文章的标准。

结果

我们的文献搜索和综述表明,已经研究了各种冥想风格下的广泛的神经力学。通过 EEG 波段详细分析了各种冥想风格的各种心理状态,如 Zen、CHAN、正念、TM、Rajayoga、Kundalini、瑜伽等。使用 KNN、SVM、随机森林、模糊逻辑、神经网络、卷积神经网络对心理状态进行分类。还需要进一步的研究来对不同心理状态对应的 EEG 特征进行分类。

结论

瑜伽练习可能是一种有效的临床和老年人群的辅助治疗方法。高级研究可以检查瑜伽的特定分支对指定临床分组的影响。瑜伽和冥想增加了大脑整体的健康活动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验