Suppr超能文献

使用深度学习架构的社交距离监测框架,以控制新冠疫情的感染传播。

Social distance monitoring framework using deep learning architecture to control infection transmission of COVID-19 pandemic.

作者信息

Ahmed Imran, Ahmad Misbah, Jeon Gwanggil

机构信息

Institute of Management Sciences, Center of Excellence in Information Technology, 1-A, Sector E-5, Phase VII, Hayatabad, Peshawar, Pakistan.

Department of Embedded Systems Engineering, Incheon National University, Incheon, Republic of Korea.

出版信息

Sustain Cities Soc. 2021 Jun;69:102777. doi: 10.1016/j.scs.2021.102777. Epub 2021 Feb 17.

Abstract

The recent outbreak of the COVID-19 affected millions of people worldwide, yet the rate of infected people is increasing. In order to cope with the global pandemic situation and prevent the spread of the virus, various unprecedented precaution measures are adopted by different countries. One of the crucial practices to prevent the spread of viral infection is social distancing. This paper intends to present a social distance framework based on deep learning architecture as a precautionary step that helps to maintain, monitor, manage, and reduce the physical interaction between individuals in a real-time top view environment. We used Faster-RCNN for human detection in the images. As the human's appearance significantly varies in a top perspective; therefore, the architecture is trained on the top view human data set. Moreover, taking advantage of transfer learning, a new trained layer is fused with a pre-trained architecture. After detection, the pair-wise distance between peoples is estimated in an image using Euclidean distance. The detected bounding box's information is utilized to measure the central point of an individual detected bounding box. A violation threshold is defined that uses distance to pixel information and determines whether two people violate social distance or not. Experiments are conducted using various test images; results demonstrate that the framework effectively monitors the social distance between peoples. The transfer learning technique enhances the overall performance of the framework by achieving an accuracy of 96% with a False Positive Rate of 0.6%.

摘要

最近爆发的新冠疫情影响了全球数百万人,而且感染人数仍在增加。为应对全球疫情形势并防止病毒传播,不同国家采取了各种前所未有的预防措施。防止病毒感染传播的关键做法之一是保持社交距离。本文旨在提出一种基于深度学习架构的社交距离框架,作为一项预防措施,有助于在实时顶视图环境中维持、监测、管理和减少个体之间的身体接触。我们使用更快的区域卷积神经网络(Faster-RCNN)在图像中进行人体检测。由于从顶部视角看人的外观差异很大;因此,该架构在顶视图人体数据集上进行训练。此外,利用迁移学习,将一个新的训练层与一个预训练架构融合。检测后,则使用欧几里得距离在图像中估计人与人之间的成对距离。利用检测到的边界框信息来测量单个检测到的边界框的中心点。定义了一个违规阈值,该阈值使用距离到像素信息来确定两人是否违反社交距离。使用各种测试图像进行了实验;结果表明该框架有效地监测了人与人之间的社交距离。迁移学习技术通过达到96%的准确率和0.6%的误报率提高了框架的整体性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bc9/7889035/86f84b929999/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验