Choudhury Atlanta, Sarma Kandarpa Kumar, Gulvanskii Vyacheslav, Kaplun Dmitrii, Dutta Lachit
Department of Electronics and Communication Engineering, Gauhati University, Guwahati, 781014, Assam, India.
Fundamental Foundations of Intelligent Systems Laboratory, Saint Petersburg Electrotechnical University "LETI", 197022, Saint Petersburg, Russian Federation.
Sci Rep. 2025 Jul 1;15(1):20497. doi: 10.1038/s41598-025-00199-9.
The universal demand for the development and deployment of responsive medical infrastructure and damage control techniques, including the application of technology, is the foremost necessity that emerged immediately in the post-pandemic era. Numerous technologies, such as artificial intelligence (AI)-aided decision-making and the Internet of Things (IoT), have been rendered indispensable for such applications. Federated learning (FL) is a popular approach used to enhance AI-driven decision support systems and maintain decentralized learning. As part of a bio-safety norms observance setup, IoT, edge computing, and FL tools can be configured to monitor social distance norms, face-mask use, contact tracing, and cyber-attacks. The design of a pandemic-compliant mechanism for keeping an eye on protocol observance of virus-triggered infectious disease and contact tracing is the subject of this study. The mechanism is based on edge computing, FL frameworks, and a variety of sensors that are connected via IoT. We employ a variety of deep learning pre-trained models (DPTM) as benchmark techniques to compare the performance of the proposed YOLOv4 and SENet attention layer combination. This combination is deployed on a FL framework that is executed using a server and Grove AI-Raspberry Pi 4 blocks act as nodes as part of a human residential premises. The models include the RESNET-50, MobileNetV2, and SocialdistancingNet-19. In particular, the integration of the YoloV4 and SENET attention layer as part of a FL framework delivers dependable performance while addressing facemask detection (94.6%), incorrect facemask detection (98%), facemask classification (95.4%), social distance (96.1%), contact tracing (95.2%) and cyber attack detection (94.2%) while performing tasks like correct and incorrect, proper and improper facemask wearing, monitoring social distancing norms observance, and contact tracing.
对响应式医疗基础设施和损害控制技术(包括技术应用)的开发与部署的普遍需求,是大流行后时代立即出现的首要需求。许多技术,如人工智能(AI)辅助决策和物联网(IoT),已成为此类应用不可或缺的一部分。联邦学习(FL)是一种用于增强人工智能驱动的决策支持系统和维持分布式学习的流行方法。作为生物安全规范遵守设置的一部分,物联网、边缘计算和联邦学习工具可配置为监测社交距离规范、口罩使用情况、接触者追踪和网络攻击。本研究的主题是设计一种符合大流行要求的机制,用于监测病毒引发的传染病的协议遵守情况和接触者追踪。该机制基于边缘计算、联邦学习框架以及通过物联网连接的各种传感器。我们采用多种深度学习预训练模型(DPTM)作为基准技术,以比较所提出的YOLOv4和SENet注意力层组合的性能。这种组合部署在一个联邦学习框架上,该框架由服务器执行,Grove AI - 树莓派4模块作为人类居住场所的一部分充当节点。这些模型包括RESNET - 50、MobileNetV2和SocialdistancingNet - 19。特别是,作为联邦学习框架一部分的YoloV4和SENET注意力层的集成,在执行诸如正确和不正确、正确佩戴和不正确佩戴口罩、监测社交距离规范遵守情况以及接触者追踪等任务时,在解决口罩检测(94.6%)、错误口罩检测(98%)、口罩分类(95.4%)、社交距离(96.1%)、接触者追踪(95.2%)和网络攻击检测(94.2%)方面提供了可靠的性能。
J Med Internet Res. 2021-11-2
Arch Ital Urol Androl. 2025-6-30
Therap Adv Gastroenterol. 2025-6-23
Cochrane Database Syst Rev. 2022-5-20
Sensors (Basel). 2025-1-10
J King Saud Univ Comput Inf Sci. 2022-11
Trans Indian Natl Acad Eng. 2022
IEEE Trans Netw Sci Eng. 2020-10-23
Comput Electr Eng. 2022-5