Suppr超能文献

在贝叶斯情境下优化 I 型错误率和 II 型错误率之间的权衡。

Optimising the trade-off between type I and II error rates in the Bayesian context.

机构信息

Statistical Sciences and Innovation, UCB Pharma, Slough, UK.

出版信息

Pharm Stat. 2021 Jul;20(4):710-720. doi: 10.1002/pst.2102. Epub 2021 Feb 22.

Abstract

For any decision-making study, there are two sorts of errors that can be made, declaring a positive result when the truth is negative, and declaring a negative result when the truth is positive. Traditionally, the primary analysis of a study is a two-sided hypothesis test, the type I error rate will be set to 5% and the study is designed to give suitably low type II error - typically 10 or 20% - to detect a given effect size. These values are standard, arbitrary and, other than the choice between 10 and 20%, do not reflect the context of the study, such as the relative costs of making type I and II errors and the prior belief the drug will be placebo-like. Several authors have challenged this paradigm, typically for the scenario where the planned analysis is frequentist. When resource is limited, there will always be a trade-off between the type I and II error rates, and this article explores optimising this trade-off for a study with a planned Bayesian statistical analysis. This work provides a scientific basis for a discussion between stakeholders as to what type I and II error rates may be appropriate and some algebraic results for normally distributed data.

摘要

对于任何决策研究,都可能犯两种错误,即当真相为负时宣布阳性结果,当真相为正时宣布阴性结果。传统上,研究的主要分析是双尾假设检验,将Ⅰ类错误率设置为 5%,并设计研究以适当降低Ⅱ类错误——通常为 10%或 20%——以检测到给定的效果大小。这些值是标准的、任意的,除了在 10%和 20%之间进行选择外,它们并不反映研究的背景,例如犯Ⅰ类和Ⅱ类错误的相对成本,以及对药物将类似于安慰剂的先验信念。一些作者对这一范式提出了质疑,通常是针对计划分析是频率主义的情况。当资源有限时,Ⅰ类和Ⅱ类错误率之间总是存在权衡,本文探讨了针对计划进行贝叶斯统计分析的研究如何优化这种权衡。这项工作为利益相关者之间就何种Ⅰ类和Ⅱ类错误率可能是合适的以及正态分布数据的一些代数结果提供了科学依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验