Suppr超能文献

在频率主义者自适应富集设计中使用贝叶斯建模。

Using Bayesian modeling in frequentist adaptive enrichment designs.

作者信息

Simon Noah, Simon Richard

机构信息

Department of Biostatistics, University of Washington, Box 357232, Seattle, WA 98195, USA

Biometric Research Branch of the National Cancer Institute (at the National Institutes of Health), 9609 Medical Center Dr, Rockville, MD 20850, USA.

出版信息

Biostatistics. 2018 Jan 1;19(1):27-41. doi: 10.1093/biostatistics/kxw054.

Abstract

Our increased understanding of the mechanistic heterogeneity of diseases has pushed the development of targeted therapeutics. We do not expect all patients with a given disease to benefit from a targeted drug; only those in the target population. That is, those with sufficient dysregulation in the biomolecular pathway targeted by treatment. However, due to complexity of the pathway, and/or technical issues with our characterizing assay, it is often hard to characterize the target population until well into large-scale clinical trials. This has stimulated the development of adaptive enrichment trials; clinical trials in which the target population is adaptively learned; and enrollment criteria are adaptively updated to reflect this growing understanding. This paper proposes a framework for group-sequential adaptive enrichment trials. Building on the work of Simon & Simon (2013). Adaptive enrichment designs for clinical trials. Biostatistics 14(4), 613-625), it includes a frequentist hypothesis test at the end of the trial. However, it uses Bayesian methods to optimize the decisions required during the trial (regarding how to restrict enrollment) and Bayesian methods to estimate effect size, and characterize the target population at the end of the trial. This joint frequentist/Bayesian design combines the power of Bayesian methods for decision making with the use of a formal hypothesis test at the end of the trial to preserve the studywise probability of a type I error.

摘要

我们对疾病机制异质性的深入理解推动了靶向治疗的发展。我们并不期望所有患有特定疾病的患者都能从靶向药物中获益;只有目标人群中的患者才会受益。也就是说,那些在治疗所针对的生物分子途径中存在足够失调的患者。然而,由于该途径的复杂性和/或我们的表征分析存在技术问题,通常很难在大规模临床试验深入进行之前就确定目标人群。这刺激了适应性富集试验的发展;在这类临床试验中,目标人群是通过自适应学习确定的;入组标准也会根据不断增加的认识进行自适应更新。本文提出了一个成组序贯自适应富集试验的框架。该框架以Simon & Simon(2013年,《临床试验的自适应富集设计》,《生物统计学》14(4),613 - 625)的工作为基础,在试验结束时包含一个频率学派假设检验。然而,它使用贝叶斯方法来优化试验期间所需的决策(关于如何限制入组),并使用贝叶斯方法来估计效应大小,以及在试验结束时表征目标人群。这种联合的频率学派/贝叶斯设计将贝叶斯方法在决策方面的优势与试验结束时使用正式假设检验相结合,以保持整体I类错误的概率。

相似文献

3
Bayesian randomized clinical trials: From fixed to adaptive design.贝叶斯随机临床试验:从固定设计到适应性设计。
Contemp Clin Trials. 2017 Aug;59:77-86. doi: 10.1016/j.cct.2017.04.010. Epub 2017 Apr 26.

引用本文的文献

6
Adaptive Enrichment Designs in Clinical Trials.临床试验中的适应性富集设计
Annu Rev Stat Appl. 2021 Mar;8(1):393-411. doi: 10.1146/annurev-statistics-040720-032818.

本文引用的文献

5
A two-stage patient enrichment adaptive design in phase II oncology trials.
Contemp Clin Trials. 2014 Jan;37(1):148-54. doi: 10.1016/j.cct.2013.12.001. Epub 2013 Dec 14.
7
Adaptive enrichment designs for clinical trials.临床试验的适应性富集设计。
Biostatistics. 2013 Sep;14(4):613-25. doi: 10.1093/biostatistics/kxt010. Epub 2013 Mar 21.
8
Group sequential enrichment design incorporating subgroup selection.分组序贯富集设计结合亚组选择。
Stat Med. 2013 Jul 20;32(16):2695-714. doi: 10.1002/sim.5738. Epub 2013 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验