Suppr超能文献

整体 LSTM 用于行人轨迹预测。

Holistic LSTM for Pedestrian Trajectory Prediction.

出版信息

IEEE Trans Image Process. 2021;30:3229-3239. doi: 10.1109/TIP.2021.3058599. Epub 2021 Mar 2.

Abstract

Accurate predictions of future pedestrian trajectory could prevent a considerable number of traffic injuries and improve pedestrian safety. It involves multiple sources of information and real-time interactions, e.g., vehicle speed and ego-motion, pedestrian intention and historical locations. Existing methods directly apply a simple concatenation operation to combine multiple cues while their dynamics over time are less studied. In this paper, we propose a novel Long Short-Term Memory (LSTM), namely, to incorporate multiple sources of information from pedestrians and vehicles adaptively. Different from LSTM, our considers mutual interactions and explores intrinsic relations among multiple cues. First, we introduce extra memory cells to improve the transferability of LSTMs in modeling future variations. These extra memory cells include a speed cell to explicitly model vehicle speed dynamics, an intention cell to dynamically analyze pedestrian crossing intentions and a correlation cell to exploit correlations among temporal frames. These three individual cells uncover the future movement of vehicles, pedestrians and global scenes. Second, we propose a gated shifting operation to learn the movement of pedestrians. The intention of crossing the road or not would significantly affect pedestrian's spatial locations. To this end, global scene dynamics and pedestrian intention information are leveraged to model the spatial shifts. Third, we integrate the speed variations to the output gate and dynamically reweight the output channels via the scaling of vehicle speed. The movement of the vehicle would alter the scale of the predicted pedestrian bounding box: as the vehicle gets closer to the pedestrian, the bounding box is enlarging. Our rescaling process captures the relative movement and updates the size of pedestrian bounding boxes accordingly. Experiments conducted on three pedestrian trajectory forecasting benchmarks show that our achieves state-of-the-art performance.

摘要

准确预测未来行人轨迹可以预防相当数量的交通伤害,提高行人安全性。它涉及多个信息源和实时交互,例如车辆速度和自身运动、行人意图和历史位置。现有的方法直接应用简单的串联操作来组合多个线索,而对它们随时间的动态变化研究较少。在本文中,我们提出了一种新的长短期记忆(LSTM)方法,即自适应地融合来自行人和车辆的多个信息源。与 LSTM 不同,我们的方法考虑了相互作用,并探索了多个线索之间的内在关系。首先,我们引入了额外的记忆单元来提高 LSTM 在建模未来变化中的可转移性。这些额外的记忆单元包括一个速度单元,用于显式建模车辆速度动态;一个意图单元,用于动态分析行人穿越意图;一个相关单元,用于利用时间帧之间的相关性。这三个单独的单元揭示了车辆、行人以及全局场景的未来运动。其次,我们提出了一种门控移位操作来学习行人的运动。过马路的意图是否会显著影响行人的空间位置。为此,我们利用全局场景动态和行人意图信息来建模空间位移。第三,我们将速度变化集成到输出门中,并通过车辆速度的缩放来动态重新加权输出通道。车辆的运动将改变预测行人边界框的比例:当车辆靠近行人时,边界框会放大。我们的重新缩放过程捕捉到相对运动,并相应地更新行人边界框的大小。在三个行人轨迹预测基准上进行的实验表明,我们的方法取得了最先进的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验