Kirchhof Jan N, Weinel Kristina, Heeg Sebastian, Deinhart Victor, Kovalchuk Sviatoslav, Höflich Katja, Bolotin Kirill I
Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
Ferdinand-Braun-Institut gGmbH Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin, Germany.
Nano Lett. 2021 Mar 10;21(5):2174-2182. doi: 10.1021/acs.nanolett.0c04986. Epub 2021 Feb 23.
In the field of phononics, periodic patterning controls vibrations and thereby the flow of heat and sound in matter. Bandgaps arising in such phononic crystals (PnCs) realize low-dissipation vibrational modes and enable applications toward mechanical qubits, efficient waveguides, and state-of-the-art sensing. Here, we combine phononics and two-dimensional materials and explore tuning of PnCs via applied mechanical pressure. To this end, we fabricate the thinnest possible PnC from monolayer graphene and simulate its vibrational properties. We find a bandgap in the megahertz regime within which we localize a defect mode with a small effective mass of 0.72 ag = 0.002 m. We exploit graphene's flexibility and simulate mechanical tuning of a finite size PnC. Under electrostatic pressure up to 30 kPa, we observe an upshift in frequency of the entire phononic system by ∼350%. At the same time, the defect mode stays within the bandgap and remains localized, suggesting a high-quality, dynamically tunable mechanical system.
在声子学领域,周期性图案控制振动,从而控制物质中的热流和声流。这种声子晶体(PnC)中出现的带隙实现了低耗散振动模式,并使机械量子比特、高效波导和最先进的传感等应用成为可能。在此,我们将声子学与二维材料相结合,并探索通过施加机械压力对声子晶体进行调谐。为此,我们用单层石墨烯制造了尽可能薄的声子晶体,并模拟了其振动特性。我们在兆赫兹范围内发现了一个带隙,在该带隙内我们定位了一个有效质量为0.72阿伏伽德罗常数=0.002米的小缺陷模式。我们利用石墨烯的柔韧性,模拟了有限尺寸声子晶体的机械调谐。在高达30千帕的静电压力下,我们观察到整个声子系统的频率上移了约350%。与此同时,缺陷模式保持在带隙内并保持局域化,这表明这是一个高质量、动态可调谐的机械系统。