Suppr超能文献

兆赫兹频率下纳米机械晶格中弹性波传播的电调谐

Electrical tuning of elastic wave propagation in nanomechanical lattices at MHz frequencies.

作者信息

Cha Jinwoong, Daraio Chiara

机构信息

Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.

Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.

出版信息

Nat Nanotechnol. 2018 Nov;13(11):1016-1020. doi: 10.1038/s41565-018-0252-6. Epub 2018 Sep 10.

Abstract

Nanoelectromechanical systems (NEMS) that operate in the megahertz (MHz) regime allow energy transducibility between different physical domains. For example, they convert optical or electrical signals into mechanical motions and vice versa. This coupling of different physical quantities leads to frequency-tunable NEMS resonators via electromechanical non-linearities. NEMS platforms with single- or low-degrees of freedom have been employed to demonstrate quantum-like effects, such as mode cooling, mechanically induced transparency, Rabi oscillation, two-mode squeezing and phonon lasing. Periodic arrays of NEMS resonators with architected unit cells enable fundamental studies of lattice-based solid-state phenomena, such as bandgaps, energy transport, non-linear dynamics and localization, and topological properties, directly transferrable to on-chip devices. Here we describe one-dimensional, non-linear, nanoelectromechanical lattices (NEML) with active control of the frequency band dispersion in the radio-frequency domain (10-30 MHz). The design of our systems is inspired by NEMS-based phonon waveguides and includes the voltage-induced frequency tuning of the individual resonators. Our NEMLs consist of a periodic arrangement of mechanically coupled, free-standing nanomembranes with circular clamped boundaries. This design forms a flexural phononic crystal with a well-defined bandgap, 1.8 MHz wide. The application of a d.c. gate voltage creates voltage-dependent on-site potentials, which can significantly shift the frequency bands of the device. Additionally, a dynamic modulation of the voltage triggers non-linear effects, which induce the formation of a phononic bandgap in the acoustic branch, analogous to Peierls transition in condensed matter. The gating approach employed here makes the devices more compact than recently proposed systems, whose tunability mostly relies on materials' compliance and mechanical non-linearities.

摘要

工作在兆赫兹(MHz)频段的纳米机电系统(NEMS)能够实现不同物理域之间的能量转换。例如,它们可以将光信号或电信号转换为机械运动,反之亦然。不同物理量之间的这种耦合通过机电非线性效应产生了频率可调谐的NEMS谐振器。具有单自由度或低自由度的NEMS平台已被用于演示类量子效应,如模式冷却、机械诱导透明、拉比振荡、双模压缩和声子激光。具有精心设计的晶胞的NEMS谐振器的周期性阵列能够对基于晶格的固态现象进行基础研究,如带隙、能量传输、非线性动力学和局域化,以及拓扑性质,这些研究成果可直接应用于片上器件。在此,我们描述了一种一维非线性纳米机电晶格(NEML),其能够在射频域(10 - 30 MHz)对频带色散进行主动控制。我们系统的设计灵感来源于基于NEMS的声子波导,并包括对单个谐振器的电压诱导频率调谐。我们的NEML由具有圆形夹紧边界的机械耦合独立纳米膜的周期性排列组成。这种设计形成了一个具有明确带隙(带宽为1.8 MHz)的弯曲声子晶体。施加直流栅极电压会产生与电压相关的在位势,这会显著移动器件的频带。此外,电压的动态调制会触发非线性效应,从而在声学分支中诱导出声子带隙的形成,类似于凝聚态物质中的派尔斯转变。这里采用的门控方法使器件比最近提出的系统更紧凑,后者的可调谐性大多依赖于材料的柔顺性和机械非线性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验