Suppr超能文献

生物分子系统的超大规模量子化学计算:以SARS-CoV-2病毒的刺突蛋白为例。

Ultra-large-scale quantum chemical computation of bio-molecular systems: The case of spike protein of SARS-CoV-2 virus.

作者信息

Ching Wai-Yim, Adhikari Puja, Jawad Bahaa, Podgornik Rudolf

机构信息

Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO, USA.

School of Physical Sciences and Kavli Institute of Theoretical Science, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Comput Struct Biotechnol J. 2021;19:1288-1301. doi: 10.1016/j.csbj.2021.02.004. Epub 2021 Feb 19.

Abstract

The COVID-19 pandemic poses a severe threat to human health with an unprecedented social and economic disruption. of the SARS-CoV-2 virus is pivotal in understanding the virus anatomy, since it initiates the first contact with the ACE2 receptor in the human cell. We report results of computation of the spike protein, the largest quantum chemical computation to date on any bio-molecular system, using a by focusing on individual structural domains. In this approach we divided the S-protein into seven structural domains: N-terminal domain (NTD), receptor binding domain (RBD), subdomain 1 (SD1), subdomain 2 (SD2), fusion peptide (FP), heptad repeat 1 with central helix (HR1-CH) and connector domain (CD). The entire Chain A has 14,488 atoms including the hydrogen atoms but excluding the amino acids with missing coordinates based on the PDB data (ID: 6VSB). The results include structural refinement, calculation of intra-molecular bonding mechanism, 3- dimensional non-local inter-amino acid interaction with implications for the inter-domain interaction. Details of the electronic structure, interatomic bonding, partial charge distribution and the role played by hydrogen bond network are discussed. In the interaction among structural domains, we present new insights for crucial hinge-like movement and fusion process. Extension of such calculation to the interface between the S-protein binding domain and ACE2 receptor can provide a pathway for computational understanding of mutations and the design of therapeutic drugs to combat the COVID-19 pandemic.

摘要

新冠疫情对人类健康构成了严重威胁,造成了前所未有的社会和经济混乱。严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒的刺突蛋白对于理解病毒结构至关重要,因为它是人细胞中与血管紧张素转换酶2(ACE2)受体首次接触的部分。我们报告了对刺突蛋白进行计算的结果,这是迄今为止对任何生物分子系统进行的最大规模量子化学计算,通过聚焦于各个结构域来进行。在这种方法中,我们将S蛋白分为七个结构域:N端结构域(NTD)、受体结合结构域(RBD)、亚结构域1(SD1)、亚结构域2(SD2)、融合肽(FP)、带有中央螺旋的七肽重复序列1(HR1-CH)和连接结构域(CD)。根据蛋白质数据银行(PDB)数据(ID:6VSB),整个A链包括氢原子共有14488个原子,但不包括坐标缺失的氨基酸。结果包括结构优化、分子内键合机制计算、三维非局部氨基酸间相互作用及其对结构域间相互作用的影响。讨论了电子结构、原子间键合、部分电荷分布以及氢键网络所起的作用的细节。在结构域之间的相互作用方面,我们对关键的类似铰链的运动和融合过程提出了新的见解。将这种计算扩展到S蛋白结合结构域与ACE2受体之间的界面,可以为通过计算理解突变以及设计对抗新冠疫情的治疗药物提供一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee8/7921757/172b3610f4bb/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验