Suppr超能文献

噪声数据的数值微分:一个统一的多目标优化框架。

Numerical differentiation of noisy data: A unifying multi-objective optimization framework.

作者信息

van Breugel Floris, Kutz J Nathan, Brunton Bingni W

机构信息

Department of Mechanical Engineering, University of Nevada, Reno, NV 89557.

Department of Applied Math, University of Washington, Seattle, WA, 98195, USA.

出版信息

IEEE Access. 2020;8:196865-196877. doi: 10.1109/access.2020.3034077. Epub 2020 Oct 27.

Abstract

Computing derivatives of noisy measurement data is ubiquitous in the physical, engineering, and biological sciences, and it is often a critical step in developing dynamic models or designing control. Unfortunately, the mathematical formulation of numerical differentiation is typically ill-posed, and researchers often resort to an process for choosing one of many computational methods and its parameters. In this work, we take a principled approach and propose a multi-objective optimization framework for choosing parameters that minimize a loss function to balance the faithfulness and smoothness of the derivative estimate. Our framework has three significant advantages. First, the task of selecting multiple parameters is reduced to choosing a single hyper-parameter. Second, where ground-truth data is unknown, we provide a heuristic for selecting this hyper-parameter based on the power spectrum and temporal resolution of the data. Third, the optimal value of the hyper-parameter is consistent across different differentiation methods, thus our approach unifies vastly different numerical differentiation methods and facilitates unbiased comparison of their results. Finally, we provide an extensive open-source Python library pynumdiff to facilitate easy application to diverse datasets (https://github.com/florisvb/PyNumDiff).

摘要

在物理、工程和生物科学领域,对噪声测量数据求导的计算无处不在,并且它通常是开发动态模型或设计控制过程中的关键步骤。不幸的是,数值微分的数学公式通常是不适定的,研究人员常常需要采用一种试错过程来从众多计算方法及其参数中选择其一。在这项工作中,我们采用一种有原则的方法,提出了一个多目标优化框架,用于选择参数,以最小化一个损失函数,从而平衡导数估计的忠实性和平滑性。我们的框架具有三个显著优点。第一,选择多个参数的任务简化为选择单个超参数。第二,在真实数据未知的情况下,我们基于数据的功率谱和时间分辨率提供一种选择该超参数的启发式方法。第三,超参数的最优值在不同的微分方法中是一致的,因此我们的方法统一了非常不同的数值微分方法,并便于对它们的结果进行无偏比较。最后,我们提供了一个广泛的开源Python库pynumdiff,以方便其轻松应用于各种数据集(https://github.com/florisvb/PyNumDiff)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d475/7899139/63c0d60b3028/nihms-1644683-f0004.jpg

相似文献

8
A Unifying Probabilistic Framework for Partially Labeled Data Learning.基于部分标记数据学习的统一概率框架。
IEEE Trans Pattern Anal Mach Intell. 2023 Jul;45(7):8036-8048. doi: 10.1109/TPAMI.2022.3228755. Epub 2023 Jun 5.

引用本文的文献

2
InstaMap: instant-NGP for cryo-EM density maps.InstaMap:用于冷冻电镜密度图的即时神经图形处理器
Acta Crystallogr D Struct Biol. 2025 Apr 1;81(Pt 4):147-169. doi: 10.1107/S2059798325002025. Epub 2025 Mar 26.
4
Derivative-Free Domain-Informed Data-Driven Discovery of Sparse Kinetic Models.无导数域信息的数据驱动稀疏动力学模型发现
Ind Eng Chem Res. 2025 Jan 27;64(5):2601-2615. doi: 10.1021/acs.iecr.4c02981. eCollection 2025 Feb 5.

本文引用的文献

2
An interactive web-based dashboard to track COVID-19 in real time.一个基于网络的交互式仪表盘,用于实时追踪新冠病毒。
Lancet Infect Dis. 2020 May;20(5):533-534. doi: 10.1016/S1473-3099(20)30120-1. Epub 2020 Feb 19.
3
SciPy 1.0: fundamental algorithms for scientific computing in Python.SciPy 1.0:Python 中的科学计算基础算法。
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
8
A comparative approach to closed-loop computation.闭环计算的比较方法。
Curr Opin Neurobiol. 2014 Apr;25:54-62. doi: 10.1016/j.conb.2013.11.005. Epub 2013 Dec 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验