van Breugel Floris, Kutz J Nathan, Brunton Bingni W
Department of Mechanical Engineering, University of Nevada, Reno, NV 89557.
Department of Applied Math, University of Washington, Seattle, WA, 98195, USA.
IEEE Access. 2020;8:196865-196877. doi: 10.1109/access.2020.3034077. Epub 2020 Oct 27.
Computing derivatives of noisy measurement data is ubiquitous in the physical, engineering, and biological sciences, and it is often a critical step in developing dynamic models or designing control. Unfortunately, the mathematical formulation of numerical differentiation is typically ill-posed, and researchers often resort to an process for choosing one of many computational methods and its parameters. In this work, we take a principled approach and propose a multi-objective optimization framework for choosing parameters that minimize a loss function to balance the faithfulness and smoothness of the derivative estimate. Our framework has three significant advantages. First, the task of selecting multiple parameters is reduced to choosing a single hyper-parameter. Second, where ground-truth data is unknown, we provide a heuristic for selecting this hyper-parameter based on the power spectrum and temporal resolution of the data. Third, the optimal value of the hyper-parameter is consistent across different differentiation methods, thus our approach unifies vastly different numerical differentiation methods and facilitates unbiased comparison of their results. Finally, we provide an extensive open-source Python library pynumdiff to facilitate easy application to diverse datasets (https://github.com/florisvb/PyNumDiff).
在物理、工程和生物科学领域,对噪声测量数据求导的计算无处不在,并且它通常是开发动态模型或设计控制过程中的关键步骤。不幸的是,数值微分的数学公式通常是不适定的,研究人员常常需要采用一种试错过程来从众多计算方法及其参数中选择其一。在这项工作中,我们采用一种有原则的方法,提出了一个多目标优化框架,用于选择参数,以最小化一个损失函数,从而平衡导数估计的忠实性和平滑性。我们的框架具有三个显著优点。第一,选择多个参数的任务简化为选择单个超参数。第二,在真实数据未知的情况下,我们基于数据的功率谱和时间分辨率提供一种选择该超参数的启发式方法。第三,超参数的最优值在不同的微分方法中是一致的,因此我们的方法统一了非常不同的数值微分方法,并便于对它们的结果进行无偏比较。最后,我们提供了一个广泛的开源Python库pynumdiff,以方便其轻松应用于各种数据集(https://github.com/florisvb/PyNumDiff)。