Suppr超能文献

脑电描记图(ECoG)在灵长类视觉皮层中具有高度信息性。

Electrocorticogram (ECoG) Is Highly Informative in Primate Visual Cortex.

机构信息

IISc Mathematics Initiative, and.

Center for Neuroscience, Indian Institute of Science, Bangalore, 560012.

出版信息

J Neurosci. 2020 Mar 18;40(12):2430-2444. doi: 10.1523/JNEUROSCI.1368-19.2020. Epub 2020 Feb 17.

Abstract

Neural signals recorded at different scales contain information about environment and behavior and have been used to control Brain Machine Interfaces with varying degrees of success. However, a direct comparison of their efficacy has not been possible due to different recording setups, tasks, species, etc. To address this, we implanted customized arrays having both microelectrodes and electrocorticogram (ECoG) electrodes in the primary visual cortex of 2 female macaque monkeys, and also recorded electroencephalogram (EEG), while they viewed a variety of naturalistic images and parametric gratings. Surprisingly, ECoG had higher information and decodability than all other signals. Combining a few ECoG electrodes allowed more accurate decoding than combining a much larger number of microelectrodes. Control analyses showed that higher decoding accuracy of ECoG compared with local field potential was not because of differences in low-level visual features captured by them but instead because of larger spatial summation of the ECoG. Information was high in the 30-80 Hz range and at lower frequencies. Information in different frequencies and scales was nonredundant. These results have strong implications for Brain Machine Interface applications and for study of population representation of visual stimuli. Electrophysiological signals captured across scales by different recording electrodes are regularly used for Brain Machine Interfaces, but the information content varies due to electrode size and location. A systematic comparison of their efficiency for Brain Machine Interfaces is important but technically challenging. Here, we recorded simultaneous signals across four scales: spikes, local field potential, electrocorticogram (ECoG), and EEG, and compared their information and decoding accuracy for a large variety of naturalistic stimuli. We found that ECoGs were highly informative and outperformed other signals in information content and decoding accuracy.

摘要

在不同尺度上记录的神经信号包含有关环境和行为的信息,并已被用于控制脑机接口,取得了不同程度的成功。然而,由于记录设置、任务、物种等不同,它们的效果一直无法进行直接比较。为了解决这个问题,我们在两只雌性猕猴的初级视觉皮层中植入了具有微电极和脑电图(EEG)电极的定制阵列,同时记录了 EEG,当它们观看各种自然图像和参数光栅时。令人惊讶的是,ECoG 的信息和可解码性都高于所有其他信号。与组合大量微电极相比,组合少数几个 ECoG 电极可以实现更准确的解码。控制分析表明,与局部场电位相比,ECoG 的解码精度更高,并不是因为它们捕获的低级视觉特征不同,而是因为 ECoG 的空间总和更大。30-80Hz 范围内和较低频率的信息较高。不同频率和尺度的信息是非冗余的。这些结果对脑机接口应用和视觉刺激的群体表示研究具有重要意义。通过不同记录电极在多个尺度上捕获的电生理信号通常用于脑机接口,但由于电极尺寸和位置的不同,信息含量也有所不同。对它们在脑机接口中的效率进行系统比较很重要,但技术上具有挑战性。在这里,我们记录了跨越四个尺度的同步信号:尖峰、局部场电位、脑电描记图(ECoG)和脑电图,并比较了它们对各种自然刺激的信息和解码精度。我们发现 ECoG 高度信息丰富,在信息含量和解码精度方面优于其他信号。

相似文献

2
Cortical Electrocorticogram (ECoG) Is a Local Signal.皮层脑电图(ECoG)是一种局部信号。
J Neurosci. 2019 May 29;39(22):4299-4311. doi: 10.1523/JNEUROSCI.2917-18.2019. Epub 2019 Mar 26.
6
Decoding of visual attention from LFP signals of macaque MT.从猕猴MT区的局部场电位信号中解码视觉注意力
PLoS One. 2014 Jun 30;9(6):e100381. doi: 10.1371/journal.pone.0100381. eCollection 2014.
8
Multiscale brain-machine interface decoders.多尺度脑机接口解码器
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:6361-6364. doi: 10.1109/EMBC.2016.7592183.

引用本文的文献

7
Subspace partitioning in the human prefrontal cortex resolves cognitive interference.人类前额叶皮层的子空间划分解决了认知干扰。
Proc Natl Acad Sci U S A. 2023 Jul 11;120(28):e2220523120. doi: 10.1073/pnas.2220523120. Epub 2023 Jul 3.
8
9
Decoding of attentional state using local field potentials.使用局部场电位进行注意状态解码。
Curr Opin Neurobiol. 2022 Oct;76:102589. doi: 10.1016/j.conb.2022.102589. Epub 2022 Jun 22.

本文引用的文献

5
Cortical Electrocorticogram (ECoG) Is a Local Signal.皮层脑电图(ECoG)是一种局部信号。
J Neurosci. 2019 May 29;39(22):4299-4311. doi: 10.1523/JNEUROSCI.2917-18.2019. Epub 2019 Mar 26.
8
Brain Computer Interfaces in Rehabilitation Medicine.康复医学中的脑机接口
PM R. 2018 Sep;10(9 Suppl 2):S233-S243. doi: 10.1016/j.pmrj.2018.05.028.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验