Suppr超能文献

在自杀研究中使用类别数据分析:考虑临床实用性和实际性。

Using categorical data analyses in suicide research: Considering clinical utility and practicality.

机构信息

Department of Psychological Sciences, Texas Tech University, Lubbock, Texas, USA.

Department of Psychiatry, University of Rochester Medical Center, Rochester, New York, USA.

出版信息

Suicide Life Threat Behav. 2021 Feb;51(1):76-87. doi: 10.1111/sltb.12670.

Abstract

OBJECTIVE

Categorical data analysis is relevant to suicide risk and prevention research that focuses on discrete outcomes (e.g., suicide attempt status). Unfortunately, results from these analyses are often misinterpreted and not presented in a clinically tangible manner. We aimed to address these issues and highlight the relevance and utility of categorical methods in suicide research and clinical assessment. Additionally, we introduce relevant basic machine learning methods concepts and address the distinct utility of the current methods.

METHOD

We review relevant background concepts and pertinent issues with references to helpful resources. We also provide non-technical descriptions and tutorials of how to convey categorical statistical results (logistic regression, receiver operating characteristic [ROC] curves, area under the curve [AUC] statistics, clinical cutoff scores) for clinical context and more intuitive use.

RESULTS

We provide comprehensive examples, using simulated data, and interpret results. We also note important considerations for conducting and interpreting these analyses. We provide a walk-through demonstrating how to convert logistic regression estimates into predicted probability values, which is accompanied by Appendices demonstrating how to produce publication-ready figures in R and Microsoft Excel.

CONCLUSION

Improving the translation of statistical estimates to practical, clinically tangible information may narrow the divide between research and clinical practice.

摘要

目的

分类数据分析与专注于离散结果(例如,自杀尝试状态)的自杀风险和预防研究相关。不幸的是,这些分析的结果经常被误解,并且没有以临床可感知的方式呈现。我们旨在解决这些问题,并强调分类方法在自杀研究和临床评估中的相关性和实用性。此外,我们介绍了相关的基本机器学习方法概念,并探讨了当前方法的独特用途。

方法

我们回顾了相关的背景概念和参考有用资源的相关问题。我们还提供了非技术性的描述和教程,介绍如何为临床背景和更直观的用途传达分类统计结果(逻辑回归、接收者操作特征[ROC]曲线、曲线下面积[AUC]统计、临床截断分数)。

结果

我们提供了全面的示例,使用模拟数据,并解释了结果。我们还注意到进行和解释这些分析的重要考虑因素。我们提供了一个演练,演示如何将逻辑回归估计值转换为预测概率值,附录中演示了如何在 R 和 Microsoft Excel 中生成可发表的图形。

结论

提高统计估计值到实际、临床可感知信息的转化,可能会缩小研究和临床实践之间的差距。

相似文献

1
Using categorical data analyses in suicide research: Considering clinical utility and practicality.
Suicide Life Threat Behav. 2021 Feb;51(1):76-87. doi: 10.1111/sltb.12670.
2
Reflection on modern methods: Revisiting the area under the ROC Curve.
Int J Epidemiol. 2020 Aug 1;49(4):1397-1403. doi: 10.1093/ije/dyz274.
3
Towards understanding and predicting suicidality in women: biomarkers and clinical risk assessment.
Mol Psychiatry. 2016 Jun;21(6):768-85. doi: 10.1038/mp.2016.31. Epub 2016 Apr 5.
4
Translational biomarker discovery in clinical metabolomics: an introductory tutorial.
Metabolomics. 2013 Apr;9(2):280-299. doi: 10.1007/s11306-012-0482-9. Epub 2012 Dec 4.
5
Classification of suicide attempters in schizophrenia using sociocultural and clinical features: A machine learning approach.
Gen Hosp Psychiatry. 2017 Jul;47:20-28. doi: 10.1016/j.genhosppsych.2017.03.001. Epub 2017 Mar 4.
6
Response to letter to the editor from Dr Rahman Shiri: The challenging topic of suicide across occupational groups.
Scand J Work Environ Health. 2018 Jan 1;44(1):108-110. doi: 10.5271/sjweh.3698. Epub 2017 Dec 8.
7
Predicting suicide attempts with the SAD PERSONS scale: a longitudinal analysis.
J Clin Psychiatry. 2012 Jun;73(6):e735-41. doi: 10.4088/JCP.11m07362.
8
Assessing the predictive ability of the Suicide Crisis Inventory for near-term suicidal behavior using machine learning approaches.
Int J Methods Psychiatr Res. 2021 Mar;30(1):e1863. doi: 10.1002/mpr.1863. Epub 2020 Nov 9.
9
Receiver operating characteristic (ROC) curve: practical review for radiologists.
Korean J Radiol. 2004 Jan-Mar;5(1):11-8. doi: 10.3348/kjr.2004.5.1.11.
10
Estimating the Area Under ROC Curve When the Fitted Binormal Curves Demonstrate Improper Shape.
Acad Radiol. 2017 Feb;24(2):209-219. doi: 10.1016/j.acra.2016.09.020. Epub 2016 Nov 21.

本文引用的文献

2
Prediction Models for Suicide Attempts and Deaths: A Systematic Review and Simulation.
JAMA Psychiatry. 2019 Jun 1;76(6):642-651. doi: 10.1001/jamapsychiatry.2019.0174.
3
The use of machine learning in the study of suicidal and non-suicidal self-injurious thoughts and behaviors: A systematic review.
J Affect Disord. 2019 Feb 15;245:869-884. doi: 10.1016/j.jad.2018.11.073. Epub 2018 Nov 12.
4
The Interpersonal Needs Questionnaire: Statistical Considerations for Improved Clinical Application.
Assessment. 2020 Apr;27(3):621-637. doi: 10.1177/1073191118824660. Epub 2019 Jan 17.
6
Suicide Risk Assessment.
Crisis. 2018 Jul;39(4):229-234. doi: 10.1027/0227-5910/a000558.
7
Detecting Potential Underreporting of Suicide Ideation Among U.S. Military Personnel.
Suicide Life Threat Behav. 2019 Feb;49(1):210-220. doi: 10.1111/sltb.12425. Epub 2017 Dec 27.
8
The clinical application of suicide risk assessment: A theory-driven approach.
Clin Psychol Psychother. 2017 Nov;24(6):1406-1420. doi: 10.1002/cpp.2086. Epub 2017 Apr 18.
9
Risk factors for suicidal thoughts and behaviors: A meta-analysis of 50 years of research.
Psychol Bull. 2017 Feb;143(2):187-232. doi: 10.1037/bul0000084. Epub 2016 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验