Suppr超能文献

神经网络预测 ICU 收治的急性胃肠道出血患者需要输红细胞。

Neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit.

机构信息

Yale School of Medicine, New Haven, CT, USA.

Department of Computer Science, Yale University, New Haven, CT, USA.

出版信息

Sci Rep. 2021 Apr 23;11(1):8827. doi: 10.1038/s41598-021-88226-3.

Abstract

Acute gastrointestinal bleeding is the most common gastrointestinal cause for hospitalization. For high-risk patients requiring intensive care unit stay, predicting transfusion needs during the first 24 h using dynamic risk assessment may improve resuscitation with red blood cell transfusion in admitted patients with severe acute gastrointestinal bleeding. A patient cohort admitted for acute gastrointestinal bleeding (N = 2,524) was identified from the Medical Information Mart for Intensive Care III (MIMIC-III) critical care database and separated into training (N = 2,032) and internal validation (N = 492) sets. The external validation patient cohort was identified from the eICU collaborative database of patients admitted for acute gastrointestinal bleeding presenting to large urban hospitals (N = 1,526). 62 demographic, clinical, and laboratory test features were consolidated into 4-h time intervals over the first 24 h from admission. The outcome measure was the transfusion of red blood cells during each 4-h time interval. A long short-term memory (LSTM) model, a type of Recurrent Neural Network, was compared to a regression-based models on time-updated data. The LSTM model performed better than discrete time regression-based models for both internal validation (AUROC 0.81 vs 0.75 vs 0.75; P < 0.001) and external validation (AUROC 0.65 vs 0.56 vs 0.56; P < 0.001). A LSTM model can be used to predict the need for transfusion of packed red blood cells over the first 24 h from admission to help personalize the care of high-risk patients with acute gastrointestinal bleeding.

摘要

急性胃肠道出血是胃肠道住院最常见的原因。对于需要入住重症监护病房的高危患者,使用动态风险评估预测前 24 小时的输血需求,可能会改善严重急性胃肠道出血患者入院后的红细胞复苏输血。从医疗信息集市重症监护 III (MIMIC-III)重症监护数据库中确定了一个因急性胃肠道出血入院的患者队列(N=2524),并将其分为训练集(N=2032)和内部验证集(N=492)。外部验证患者队列是从大城市医院因急性胃肠道出血入院的 eICU 协作数据库中确定的(N=1526)。62 项人口统计学、临床和实验室检测特征被整合为入院后前 24 小时的 4 小时时间间隔。结果测量是每个 4 小时时间间隔的红细胞输注量。长短期记忆(LSTM)模型,一种递归神经网络,与基于时间更新的数据的回归模型进行了比较。LSTM 模型在内部验证(AUROC 0.81 与 0.75 与 0.75;P<0.001)和外部验证(AUROC 0.65 与 0.56 与 0.56;P<0.001)方面的表现均优于离散时间回归模型。LSTM 模型可用于预测入院后前 24 小时内需要输注浓缩红细胞,以帮助对急性胃肠道出血的高危患者进行个体化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62bb/8065139/cece0cb4aba6/41598_2021_88226_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验